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A. Notations
In this section, we clarify all the notations with corresponding descriptions introduced in this work.

Notation Description

DASO Distribution-Aware Semantic-Oriented (Pseudo-label)

SSL Semi-Supervised Learning.

K The number of classes in the labeled data.

X , U Labeled data and unlabeled data.

N, M Total number of examples in labeled data and unlabeled data.

Nk, Mk Number of examples in class k for labeled data and unlabeled data.

γl, γu Imbalance ratio for labeled data and unlabeled data.

m̂ Empirical pseudo-label distribution in probability form; m̂ ∈ [0, 1]
K .

σ(·) Softmax activation.

H(y, p) Cross-entropy between the target y and prediction p.

sim(·, ·) Cosine similarity.

f A classification model; a feature encoder f enc
θ followed by a linear classifier f cls

ϕ .

f enc
θ′ An EMA encoder (momentum encoder).

ρ Decay ratio for the momentum encoder.

Q A dictionary of memory queue; {Qk}Kk=1.

L The maximum queue size for the balanced memory queue.

C A set of class prototypes; {ck}Kk=1.

Tproto A temperature factor for the similarity-based classifier.

Tdist A temperature factor for the empirical pseudo-label distribution.

p̂, q(w) or q̂ A linear pseudo-label and semantic pseudo-label.

υ Class-specific mixup factor for the linear and semantic pseudo-label; {υk}Kk=1.

p̂′ A blended pseudo-label.

PseudoLabel(·) Pseudo-labeler specified by an SSL algorithm.

Φu(·, ·) A regularizer for U , specified by an SSL algorithm.

λu The loss weight for Lu.

Lalign Semantic alignment loss.

λalign The loss weight for Lalign.

P Pre-train steps for applying pseudo-label blending and Lalign.

Aw A set of weak augmentations; horizontal flip and/or crop.

As A set of strong augmentations; RandAugment [5] followed by Cutout [8].

µ Unlabeled batch ratio; multiplied to the labeled batch size B.

Table 1. Notations and their descriptions used throughout this work.



B. Algorithm
Algorithm 1 summarizes the blending procedure for the linear and semantic pseudo-labels based on the empirical pseudo-

label distribution, and Algorithm 2 represents the whole DASO framework built upon a typical SSL algorithm where the
regularizer for the SSL algorithm corresponds to Φu.

Algorithm 1 Distribution-aware pseudo-label blending, p̂′ ← Blend (p̂, q̂, Tdist).

Input: Linear pseudo-label p̂ ∈ [0, 1]K , semantic pseudo-label q̂ ∈ [0, 1]K ,
Temperature factor for the pseudo-label distribution Tdist.

Require: Empirical pseudo-label distribution m̂ = {m̂k}Kk=1.
Output: Blended pseudo-label p̂′ ∈ [0, 1]K .
for k = 1 to K do
υk ← m̂

1/Tdist
k {Temperature scaling for empirical pseudo-label distribution.}

υk ← υk/maxk υk {Normalization for blending.}
end for
k′ ← argmaxk p̂k {Class prediction of the linear pseudo-label.}
p̂′ ← (1− υk′) p̂+ υk′ q̂ {Pseudo-label blending.}

Algorithm 2 Distribution-Aware Semantic-Oriented (DASO) Pseudo-label framework.

Input: A batch of labeled data XB = {(xb, yb)}Bb=1 and unlabeled data UB = {ub}µBb=1.
Network for feature encoder f enc

θ , momentum encoder f enc
θ′ , and linear classifier f cls

ϕ .
Dictionary of memory queue Q = {Qk}Kk=1, Momentum decay ratio ρ.
Maximum queue size L, temperature factor for the similarity-based classifier Tproto,
Pre-train steps for pseudo-label blending P , current training step t.

Require: A set of weak augmentations Aw and strong augmentations As.

{Balanced Prototype Generation.}
Enqueue z(l) into Qk, where z(l) = f enc

θ′ (x) and k ← y, ∀ (x, y) ∈ XB .
Dequeue the earliest elements from Qk s.t. |Qk| = L, ∀ k ∈ {1, . . . ,K}.
ck ← 1

|Qk|
∑

zi∈Qk
zi, ∀ k ∈ {1, . . . ,K}, {A set of balanced prototypes C = {ck}Kk=1.}

{Pseudo-label generation.}
for u in UB do
z(w) ← f enc

θ (Aw(u)), z(s) ← f enc
θ (As(u)) {feature extraction}

p̂← σ
(
f cls
ϕ

(
z(w)

))
, q(w) ← σ

(
sim

(
z(w),C

)
/ Tproto

)
p̂′ ← Blend

(
p̂, q(w), Tdist

)
if t ≥ P else p̂ {Blend pseudo-labels after P train steps.}

end for

{Compute losses.}
Lcls ← E(x,y)∈XB

[H (y, σ (f(x)))]

Lalign ← Eu∈UB

[
1 (t ≥ P ) · H

(
q(w), q(s)

)]
where q(s) ← σ

(
sim

(
z(s),C

)
/ Tproto

)
.

Lu ← Eu∈UB

[
Φu

(
p̂′, p(s)

)]
where p(s) ← f cls

ϕ

(
z(s)

)
.

LDASO ← Lcls + λuLu + λalignLalign

{Update parameters.}
Update θ and ϕ to minimize LDASO via SGD optimizer.
θ′ ← ρθ′ + (1− ρ)θ {Update the parameters of momentum encoder.}
t← t+ 1



C. Detailed Experimental Setup
C.1. Benchmarks

In this work, we evaluate both cases of (i) labeled data and unlabeled data shares the same class distribution (e.g., γl = γu),
and (ii) the class distribution of unlabeled data can be different from the labeled data in various degree (e.g., γl ̸= γu).

CIFAR-10 and CIFAR-100. CIFAR benchmarks [13] originally have the same number of examples per class; 5000 and 500
examples in 32× 32 sized image for CIFAR-10 and CIFAR-100, respectively. We use the head class size N1 and imbalance
ratio of labels γl to craft the synthetically long-tailed variants across the level of imbalance and total amount of labels,

following the protocol from [12]. The number of examples other than the head class is calculated by Nk = N1 · γ
− k−1

K−1

l as
proposed by [6]. Note that each Nk, the number of examples in class k is sorted in a descending order (i.e., N1 ≥ · · · ≥ NK).

Similarly, the number of examples per class for the unlabeled data can be determined by: Mk = M1 ·γ
− k−1

K−1
u using the labels,

and the true labels are thrown away before training. We call those variants as CIFAR10/100-LT, which consist of labeled and
unlabeled splits. We measure the performance on the test data, which have 10k examples in total for both data.

STL-10. To generate STL10-LT: a long-tailed variant of STL-10 [4], we follow the same process as explained in above.
Besides the 5k labeled examples, STL-10 contains additional 100k unlabeled examples from a similar but broader distribution
compared to the labeled data. Since the information about the class distribution of the unlabeled data is not known, we only
construct the imbalanced labeled data and use the whole 100k unlabeled examples for training.

Semi-Aves. We also consider Semi-Aves benchmark [20] for more realistic scenarios. Semi-Aves includes 1k species of
birds sampled from the iNaturalist-2018 [23] with long-tailed class distribution. Moreover, only 200 species are considered
in-class, and the other 800 species correspond to the out-of-class (i.e., novel, open-set) categories for the unlabeled data. For
in-class examples, about 4k examples are labeled (X ), and the other 27k examples are unlabeled (Uin). Note that the class
distribution of labeled data does not match that of Uin (γl ̸= γu), as illustrated in [20]. The out-of-class unlabeled data (Uout)
have 122k examples in total. Semi-Aves benchmark provides 2k images and 8k images (i.e., 10 images and 40 images per
class) for the validation and test data, respectively. We combine the labeled training data and validation data, 6k in total, for
the labeled training data in our experiments, following [19]. As note, we do not make any distinction between Uin and Uout
when learning on the whole unlabeled data (U = Uin + Uout).

C.2. Training Details

CIFAR10/100-LT and STL10-LT. Following the training protocol in [12], we train a Wide ResNet-28-2 [25] with 1.5M
parameters for 250k iterations. We set the batch size of the labeled data as 64, and the network is optimized via Nesterov
SGD with momentum 0.9 and weight decay 5e-4. For the methods with using only labels, the base learning rate is set to 0.1
with linear warm-up applied during the first 2.5% of the total train steps, and it decays after 80% and 90% of the training
phase by a factor of 100, respectively, following [3]. For SSL methods, we set the base learning rate as 0.03, which is
fixed during the training. For the exponential moving average (EMA) network parameters for evaluation, the decay ratio ρ
is set to 0.999. We further clarify the details for each method, such as hyper-parameters in Appendix C.3. We measure the
performance every 500 iterations (e.g., considered as 1 epoch), and report the median value in last 20 evaluations.

Semi-Aves. We train ResNet-34 [10] with 21.3M parameters pre-trained on ImageNet [7]. For the Supervised method, we
train for 90 epochs of the labeled data, while we train 90 epochs of unlabeled data for SSL methods, using SGD optimizer
with momentum 0.9. The base learning rate is set to 0.1 and 0.04 for the Supervised and SSL method each, with the linear
warm-up for the first 5 epochs and it decays after 30 and 60 epochs, by a factor of 10. We set the labeled batch size as 256.
All training images are randomly cropped and re-scaled to 224× 224 size with random horizontal flip. The EMA decay ratio
is ρ = 0.9. The hyper-parameters of the individual method is described in Appendix C.3.

C.3. Implementation Details

DASO. Tdist, for scaling the empirical pseudo-label distribution, is chosen out of {0.3, 0.5, 1.0, 1.5}. Specifically, for
CIFAR10-LT, Tdist = 1.5 in case of γl = γu, while Tdist = 0.3 in the case of γl ̸= γu. For the other hyper-parameters,
Tproto = 0.05, L = 256, and λalign = 1, which are kept unchanged during experiments. The ablation study for those param-
eters is provided in Appendix D.5. We start applying DASO with Lalign after a few pre-training steps P = 5000 to avoid
unconfident predictions in the early stage of training. For empirical pseudo-label distribution m̂, we accumulate the class
predictions of the final pseudo-labels p̂′ every 100 iterations on CIFAR10/100-LT and STL10-LT. For Semi-Aves, we set
P = 20 epochs and update m̂ every epoch. For the EMA decay ratio ρ for prototype generation, we simply use the same



parameter of the one for evaluation. Table 2 summarizes the training details of DASO.

parameter CIFAR10-LT CIFAT100-LT STL10-LT Semi-Aves

lr 0.03 0.04

B 64 256

µ 2 5

SGD momentum 0.9 0.9

Nesterov True True

weight decay 5e-4 3e-4

L 256 256

ρ 0.999 0.9

Tproto 0.05 0.05

λalign 1.0 1.0

P 5000 steps 20 epochs

Tdist {1.5, 0.3} 0.3 0.3 0.5

Table 2. A complete list of training details for DASO framework.

Supverised. The only labeled data is trained via standard cross-entropy loss H. The training protocol and hyper-parameters
(total iterations, learning rate, optimizer, and etc.) are described in Appendix C.2.
Re-weighting with the Effective Number of Samples [6]. The per-class weights are applied to the cross-entropy loss based
on the effective number of samples.

ENk
=

1− βNk

1− β
, (1)

where Nk corresponds to the number of samples in class k, and then the weight for class k is set to be proportional to the
inverse of the effective number ENk

. β is a hyper-parameter, which is set to 0.999 during the experiments.
LDAM-DRW [3]. Decision boundary of the classifier takes up more margin in rare classes, using LDAM loss:

LLDAM = − log
ezyk−∆yk

ezyk−∆yk +
∑

j ̸=yk
ezj

, where ∆k ∝
1

N
1/4
k

. (2)

Then it adopts deferred re-weighting scheme (DRW) to apply re-balancing algorithm in later stage of training. Following
DRW scheme, we apply re-weighting objective Eq. (2) after 200k iterations.
cRT [11]. After training the entire network under imbalanced distribution, the classifier is re-trained with the parameters of
the feature encoder fixed for a balanced objective. We first train a model with cross-entropy loss. In classifier re-training
phase, we simply re-weight the cross-entropy loss with the weights based on the effective number of samples [6] for 100k
iterations. The learning rate schedule under re-training phase is proportionally adjusted.
Logit Adjustment (LA) [16]. Logits are adjusted by enforcing a large margin for the minority classes compared to the
majority ones in either two ways: post-hoc adjustment or logit-adjusted cross-entropy, based on the class frequency of labels.
In this work, we adopt the latter strategy. Before measuring cross-entropy for the labeled data, each logit is adjusted by:

pk ← pk + τ log nk, (3)

where p = f(x) and nk denotes the class label frequency value in class k. τ = 1 is a temperature scaling factor.
PseudoLabel [14]. The one-hot pseudo-label p̂ from p = f(u) regularizes the unlabeled example. Only the predictions with
the highest probability value above a certain threshold τ contribute to the regularizer. We set τ to 0.95.

Φu(p̂, p) = 1

(
max

k
pk ≥ τ

)
H (p̂, p) , (4)

where p̂ = OneHot(argmaxk pk). We set the loss weight λu = 1 and apply linear ramp-up with the ratio of 0.4; λu linearly
increases starting from 0 and attains the maximum value (λu = 1) at 40% of the total iterations.



MeanTeacher [21]. The momentum encoder fEMA = f cls
ϕ′ ◦ f enc

θ′ generates the target for the prediction of unlabeled data,
where ϕ′ and θ′ are the momentum-updating network parameters of linear classifier and feature encoder, respectively.

Φu(p̂, p) = ∥σ(p̂)− σ(p)∥2 , where p̂ = fEMA(Aw(u)) and p = f(Aw(u)). (5)

We set the EMA decay ratio ρ = 0.999. λu is set to 50, applying the linear ramp-up with the ratio of 0.4.
MixMatch [2]. Pseudo-label is produced from the multiple augmentations of the same image with entropy regularization.
Then the model learns mixup [26] images and (pseudo-) labels over the whole labeled and unlabeled data. We use the number
of augmentations as 2, temperature scaling factor as 0.5, and the sampling hyper-parameter for mixup regularization α as 0.5.
We also apply linear ramp-up strategy for λu, where it attains its maximum value 100 with the ratio of 0.016.
ReMixMatch [1]. It adds up two techniques of Augmentation Anchoring and Distribution Alignment over MixMatch [2]. We
use the advanced augmentation as RandAugment [5] followed by Cutout [8]. Considering the computational cost, we set the
number of advanced augmentations as µ = 2. For the others, we set the temperature scaling factor for pseudo-labels as 0.5,
and α as 0.75. The weights for pre-mixup loss and rotation loss are both set to 0.5. For λu, the linear ramp-up ratio is set to
0.016 with λu = 1.5. We apply weak augmentations for convenience for the labeled data, instead of advanced augmentation.
FixMatch [18]. One-hot pseudo-labels are generated from weakly augmented images as the same with PseudoLabel [14],
then they provide the targets for the predictions from strong augmentations of the same images to the cross-entropy lossH:

Φu(p̂, p
(s)) = 1

(
max

k
p
(w)
k ≥ τ

)
H

(
p̂, p(s)

)
, (6)

where p̂ = OneHot
(
argmaxk p

(w)
k

)
with p(w) = f (Aw(u)) and p(s) = f (As(u)). We use RandAugment [5] for the

advanced augmentation. For fair comparisons to ReMixMatch [1], we use the unlabeled batch ratio µ as 2. For the other
hyper-parameters, λu is set to 1 without applying linear ramp-up strategy.
USADTM [9]. It combines unsupervised semantic aggregation (USA); a clustering objective in unlabeled data and de-
formable template matching (DTM); assigning a semantic pseudo-label to each unlabeled example solely from feature-space.
The semantic pseudo-label is determined by the agreement of two different distance measure from a sample to each class
prototypes constructed from the labeled data. In our experiments, we use the loss weight for the mutual information loss
α = 0.1 and τ = 0.85 for the confidence threshold, following [9]. We note that [9] keeps some confident unlabeled examples
to treat them as labeled examples to enforce cross-entropy loss due to the limited labels (i.e., 4 labels per class). This would
also help generally in imbalanced SSL, but we do not adopt this strategy in our experiments in order to fairly comparing with
other SSL methods focusing on the aspect of pseudo-labeling method.
BOSS [17]. This originally proposes to apply three techniques altogether on FixMatch [18] to achieve state-of-the-art per-
formance on CIFAR-10 benchmark under one label per class: prototype (single-example per class) refining, pseudo-label
re-balancing, and self-training iterations. We only adopt pseudo-label re-balancing method from the original paper for fairly
comparing under imbalanced SSL. Pseudo-label re-balancing includes adjusting loss weights and confidence thresholds
based on the class distribution of predicted pseudo-labels on top of the FixMatch loss:

Φu(p̂, p
(s)) = 1

(
max

k
p
(w)
k ≥ τk

)
1

Z · ĉk
H

(
p̂, p(s)

)
, (7)

where τk is the class-dependent confidence threshold defined as:

τk = τ −∆ ·
(
1− ĉk

maxk ĉk

)
, (8)

and ĉk is the number of predicted pseudo-labels in the current batch for class k. We fix ∆ = 0.25 during the experiments.
Note that the scale of Φu is adjusted by a factor of Z to consistently maintain the relative scale of λu.
DARP [12]. The class distribution of the predicted pseudo-labels is explicitly adjusted to the given class priors via solving
a convex optimization problem. In our experiments, we use the class prior as the class label frequency in case of γl = γu
for CIFAR10-LT and CIFAR100-LT, and in case of Semi-Aves benchmark. In other cases, i.e., γl ̸= γu, we estimate the
distribution of the unlabeled data (e.g., Mk) using held-out validation set, following [12]. We start applying DARP at 100k
iterations of training with refining pseudo-labels every 10 steps. We use α = 2.0 for removing the noisy entries.



Method type CIFAR10-LT CIFAR100-LT STL10-LT
γ = γl = γu = 100 γ = γl = γu = 10 γl = 10, γu: unknown

Algorithm SSL LB PB N1 = 500 N1 = 1500 N1 = 50 N1 = 150 N1 = 150 N1 = 450
M1 = 4000 M1 = 3000 M1 = 400 M1 = 300 M = 100k M = 100k

Supervised 47.3±0.95 61.9±0.41 29.6±0.57 46.9±0.22 40.2±1.80 60.4±1.91
w/ LDAM-DRW [3] ✓ 50.1±1.55 65.7±1.49 28.4±0.32 46.2±0.46 41.8±3.05 62.1±1.39
w/ cRT [11] ✓ 49.5±1.05 65.8±0.47 30.1±0.50 48.0±0.43 40.8±1.95 61.6±1.83
w/ LA [16] ✓ 53.3±0.44 70.6±0.21 30.2±0.44 48.7±0.89 42.8±1.78 63.1±1.13

PseudoLabel [14] ✓ 47.8±1.06 63.4±0.81 30.7±0.18 47.8±0.40 42.3±0.83 60.4±1.11
USADTM [9] ✓ 72.9±0.74 73.3±0.39 48.7±1.00 58.2±0.79 68.9±1.83 77.1±0.74

FixMatch [18] ✓ 67.8±1.13 77.5±1.32 45.2±0.55 56.5±0.06 56.1±2.32 72.4±0.71
w/ CB re-weight [6] ✓ ✓ 72.2±1.28 80.9±1.52 46.0±0.27 58.3±0.46 58.9±2.79 74.7±0.55
w/ LA [16] ✓ ✓ 75.3±2.45 82.0±0.36 47.3±0.42 58.6±0.36 63.4±2.99 75.9±1.25

w/ BOSS [17] ✓ ✓ 70.3±0.87 76.5±0.66 50.0±0.39 59.3±0.22 66.4±2.09 76.0±0.85
w/ DARP [12] ✓ ✓ 74.5±0.78 77.8±0.63 49.4±0.20 58.1±0.44 66.9±1.66 75.6±0.45
w/ CReST [24] ✓ ✓ 73.4±3.10 76.6±1.23 44.3±0.77 57.1±0.58 61.7±2.51 71.6±1.17
w/ CReST+ [24] ✓ ✓ 76.3±0.86 78.1±0.42 44.5±0.94 57.1±0.65 61.2±1.27 71.5±0.96
w/ DASO (Ours) ✓ ✓ 76.0±0.37 79.1±0.75 49.8±0.24 59.2±0.35 70.0±1.19 78.4±0.80

w/ CB re-weight + DASO (Ours) ✓ ✓ ✓ 77.3±0.86 81.2±0.77 50.3±0.18 60.1±0.12 70.2±1.05 77.8±0.58
w/ LA + DASO (Ours) ✓ ✓ ✓ 77.9±0.88 82.5±0.08 50.7±0.51 60.6±0.71 71.3±1.81 79.0±0.58

Table 3. Comparison of accuracy (%) with different methods and their combinations on CIFAR10-LT, CIFAR100-LT, and STL10-LT under
different label sizes with class imbalance. SSL denotes semi-supervised learning. LB and PB correspond to re-balancing for labels and
pseudo-labels, respectively. Our DASO shows consistent performance gain over the baseline FixMatch [18], and adding label re-balancing
to our method shows the best performance among the baselines. CIFAR10/100-LT benchmarks represent the γl = γu setup, and STL10-LT
corresponds to γl ̸= γu setup. We indicate the best results in bold and the second-best results with underlined.

CReST [24]. Self-training is adopted where a SSL algorithm is iteratively re-trained with adding some acceptable pseudo-
labeled samples to the labeled data. The relative ratio of pseudo-labeled samples that will be added to the labeled set in
next generation for each class k is defined as: µk = (NK+1−k/N1)

α, where Nk is the label size for class k, suggesting that
minority-class pseudo-labels are more likely to be added. In CReST+, it adds the progressive distribution alignment (PDA) to
the CReST method. To fairly compare with other baselines with 250k of the maximum iterations in total, we divide the whole
iterations to 5 generations, where each generation trains 50k iterations for CIFAR10/100-LT and STL10-LT. For Semi-Aves,
we divide the whole 90 epochs to 3 generations of 30 epochs. For CIFAR10/100-LT and STL10-LT, we set α = 1/3 and
tmin = 0.5, and α = 0.7 and tmin = 0.5 for Semi-Aves respectively similar to [24].

ABC [15]. It trains an auxiliary balanced classifier (ABC) built upon a whole SSL learner (e.g., FixMatch [18]). In particular,
ABC shares the feature extractor with the existing pipeline, and learns the re-weighted versions of both cross-entropy with
labels and consistency regularization from unlabeled data. The re-weight mechanism is performed by the balanced batch
of labeled data and unlabeled data, where the batched images corresponding to each labels and predicted pseudo-labels are
dropped with a probability sampled from Bernoulli distribution. Here, the parameter for Bernoulli is inversely proportional
to the class frequency of the labels and pseudo-labels respectively. The ABC classifier is opted during inference.

D. Additional Experiments

D.1. Comprehensive Comparison with More Baselines

Experiments from the main paper evaluated DASO and other baseline methods specifically designed for re-balancing the
biased pseudo-labels under class-imbalanced labels and distribution mismatch between X and U . In Table 3, we introduce
more diverse baseline methods for comparisons across different benchmarks including both γl = γu and γl ̸= γu cases. As
following, we term SSL methods as SSL, label re-balancing methods as LB, and the re-balancing methods for pseudo-labels
as PB from Table 3. We consider LDAM-DRW [3], classifier re-training (cRT) [11], and class re-weighting with effective
number of samples (CB re-weight) [6] for LB, respectively. For SSL methods, we additionally introduce PseudoLabel [14]
and USADTM [9]. We further consider BOSS [17] as PB. The implementation details on those methods are explained
in Appendix C.3. Note that we extensively compare PB methods based on other than FixMatch in Table 5.



We observe in Table 3 that applying LB improves the performance for Supervised and semi-supervised (SSL, PB) learning
methods in general. This suggests that the bias of pseudo-label can be reduced by LB methods. In particular, the performance
of DASO can be further pushed by additionally applying LB methods, as noted from CB re-weight + DASO and LA + DASO.
This verifies that DASO is complementary to the existing LB methods, where the source for the performance improvement
of DASO itself comes from the ability to truly alleviate the bias of pseudo-labels, not just re-balancing the labels.

D.2. DASO with Label Re-Balancing when γl ̸= γu

We further evaluate DASO combined with other re-balancing techniques: LA [16] and ABC [15], when the class distribu-
tion of unlabeled data significantly differs from the labeled data (e.g., γl ̸= γu). In this setup, we conduct experiments with
STL10-LT, as shown in Table 4.

STL10-LT (M = 100k)
γl = 10 γl = 20

Algorithm N1 = 150 N1 = 450 N1 = 150 N1 = 450

FixMatch [18] 56.1±2.32 72.4±0.71 47.6±4.87 64.0±2.27
w/ DASO (Ours) 70.0±1.19 78.4±0.80 65.7±1.78 75.3±0.44

FixMatch w/ LA [16] 64.4±1.35 75.9±1.25 51.5±3.23 67.4±1.04
w/ DASO (Ours) 71.7±1.09 79.0±0.58 65.6±1.43 75.8±0.81

FixMatch + ABC [15] 66.3±1.00 77.1±0.56 59.3±2.66 73.0±0.91
w/ DASO (Ours) 69.6±0.94 77.9±0.89 64.5±2.81 74.7±0.16

Table 4. Comparison of accuracy (%) with the combination of various re-balancing methods on γl ̸= γu setup. DASO somewhat obtains
performance gain when even combined with either LA [16] or ABC [15] on FixMatch. We indicate the best results as bold.

We observe that both LA [16] and ABC [15], are beneficial upon baseline FixMatch. Moreover, the performance can be
further pushed when DASO is applied on top of those methods. However, the performances show marginal improvements
compared to the FixMatch w/ DASO. This opens a new challenge that calls for the design of an unified re-balancing approach
of labels and unlabeled data, which can also well address the potentially unknown unlabeled data.

D.3. Comparison based on ReMixMatch

To verify the efficacy of DASO as a generic framework, we further compare the pseudo-label re-balancing (PB) methods
based on ReMixMatch [1]. In particular, we provide the results as the same way when DASO is integrated with FixMatch [18]
from the main paper. Table 5 shows the results. We compare each method on CIFAR10/100-LT and STL10-LT, varying the
imbalance ratio while the amount of labels used are fixed by N1. Note that for CIFAR benchmarks, γ = γl = γu.

CIFAR10-LT CIFAR100-LT STL10-LT
N1 = 500,M1 = 4000. N1 = 50,M1 = 400. N1 = 150.

Algorithm γ = 100 γ = 150 γ = 10 γ = 20 γl = 10 γl = 20

ReMixMatch [1] 70.9±2.37 64.7±0.95 52.3±0.91 46.5±0.30 54.4±2.15 46.5±1.93
w/ DARP [12] 72.2±2.72 65.7±1.20 52.8±0.65 47.0±0.17 61.2±2.62 59.5±2.56
w/ CReST+ [24] 75.6±1.60 65.9±2.20 49.9±0.80 44.5±1.04 64.1±1.68 49.2±0.90
w/ DASO (Ours) 76.8±0.81 68.5±0.98 53.6±0.81 47.8±0.69 75.0±0.95 68.5±5.14

Table 5. Comparison of accuracy (%) with various pseudo-label re-balancing (PB) methods upon different baseline SSL learner, ReMix-
Match [1]. DASO outperforms all the other methods by a significant margin, which is consistent with the results when the baseline SSL
learner was FixMatch from the main paper. We indicate the best results as bold.

As can be seen, DASO achieves the best results among the baselines for comparison. From CIFAR benchmarks (e.g.,
γl = γu), DASO outperforms both DARP [12] and CReST+ [24] that leverages the assumption of γl = γu explicitly; for
example, they utilize the actual class distribution of unlabeled data. As note, while CReST+ is beneficial for ReMixMatch
when trained on CIFAR10-LT, but it performs worse in CIFAR100-LT results. This might come from the limited amount of
labels and the repeated training with re-initializing models via self-training. For STL10-LT cases, the improvements from
both DARP and CReST+ can be limited due to the mismatch of class distributions between the labeled data and unlabeled



data. In contrary, DASO significantly surpasses the other methods without the access to the class distribution of either labels
or unlabeled data. To summarize, DASO can improve typical baseline SSL methods under imbalanced data in general.

D.4. Results on Test-Time Logit Adjustment

In the main paper, we have considered Logit Adjustment (LA) [16] as applying logit-adjusted cross-entropy loss during
training. This point is also explained in Appendix C.3. On the other hand, we also consider adjusting the logits during
inference also present in [16]; we denote this type of LA as LA (inf). In Table 6, we report the results obtained from LA [16]
by this strategy when the class distribution of labeled data and unlabeled data are identical (γ = γl = γu).

CIFAR10-LT CIFAR100-LT
N1 = 1500, M1 = 3000 N1 = 50, M1 = 300

Algorithm γ = 100 γ = 150 γ = 10 γ = 20

FixMatch [18] 77.5±1.32 72.4±1.03 56.5±0.06 50.7±0.25

FixMatch w/ LA [16] 82.0±0.36 78.0±0.91 58.6±0.36 53.4±0.32
FixMatch w/ LA + CReST+ [24] 81.1±0.57 77.9±0.71 57.1±0.55 52.3±0.20
FixMatch w/ LA + DASO (Ours) 82.5±0.08 79.0±2.23 60.6±0.71 55.1±0.72

FixMatch w/ LA (inf) [16] 82.8±1.43 79.2±1.15 58.7±0.63 53.3±0.43
FixMatch w/ LA (inf) + CReST+ [24] 82.9±0.24 80.3±0.56 57.8±0.47 53.3±0.83
FixMatch w/ LA (inf) + DASO (Ours) 84.5±0.55 81.8±0.83 60.5±0.49 55.2±0.47

Table 6. Comparison of accuracy (%) with different strategies of applying Logit Adjustment (LA) [16]: either train-time (noted as LA) or
during inference (noted as LA (inf)). We observe large gains compared to baseline FixMatch when LA is applied during inference.

D.5. More Ablation Study

We conduct several ablation studies on the hyper-parameters in DASO framework. As the same with the ablation study
conducted from the main paper, we consider FixMatch [18] with DASO on CIFAR10-LT with N1 = 500, γ = 100 (denoted
as C10) and STL10-LT with N1 = 150, γl = 10 (denoted as STL10) respectively. Table 7 compares different values of the
queue size L for constructing the balanced prototypes. Table 8 tests different temperature factor Tproto for the similarity-based
classifier. Finally, Table 9 shows the effect of different loss weights λalign for the semantic alignment loss. We shaded rows
that correspond to the hyper-parameter of the complete DASO framework. We also indicate the best results in bold.

C10 STL10

FixMatch 68.25 55.53

L = 128 73.77 69.17
L = 256 75.97 70.21
L = 512 75.03 69.96
L = 1024 74.36 69.64
L = 2048 73.50 69.99

Table 7. Ablation study on L, the bal-
anced queue size.

C10 STL10

FixMatch 68.25 55.53

Tproto = 0.02 73.84 68.19
Tproto = 0.05 75.97 70.21
Tproto = 0.2 70.53 66.62
Tproto = 0.5 52.36 60.92
Tproto = 1.0 46.47 57.40

Table 8. Ablation study on Tproto for se-
mantic pseudo-label.

C10 STL10

FixMatch 68.25 55.53

λalign = 0 70.98 61.64
λalign = 0.5 73.78 69.01
λalign = 1 75.97 70.21
λalign = 1.5 74.59 71.51
λalign = 2 74.57 71.12

Table 9. Ablation study on λalign, which
is a weight for Lalign.

As note, we do not tune the hyper-parameters above (L, Tproto, λalign) depending on different benchmarks across different
imbalance ratio. For example, in STL10-LT case, using λalign value higher than 1 seems effective, but the result of 70.21%
obtained from λalign = 1 already performs well.

E. Detailed Analysis
E.1. Recall and Precision Analysis

E.1.1 Detailed comparison for linear pseudo-label and semantic pseudo-label methods

We first take a closer look at the bias of pseudo-labels of each method by analyzing per-class recall and precision. We then
compare the class-wise test accuracy of each model to evaluate the capability for each class, as done in the main paper. Fig. 1
provides the comparison of FixMatch w/ DASO (ours) and USADTM [9] over FixMatch [18] trained on CIFAR10-LT.
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Figure 1. Analysis of bias in pseudo-labels and test accuracy. We consider FixMatch [18] for linear pseudo-labels, USADTM [9] for
semantic pseudo-labels, and the proposed FixMatch w/ DASO trained on CIFAR10-LT with N1 = 500 with γl = γu = 100.

Compared to the linear pseudo-labels, the recall of semantic pseudo-labels on minority classes significantly increased
in Fig. 1a. However, their precision values are degraded on the minorities, which means that the semantic pseudo-labels have
the bias towards the minorities, leading to performance drop on the majority classes.

In contrary, the pseudo-labels generated from our DASO maintain high precision while the recall on the minority classes
increased, encouraging high performance on both of majority and minority classes. From the analyses, pseudo-labels from
DASO find the trade-off between linear and semantic pseudo-labels with respect to the bias that performs well on test data.
Since DASO also aims to keep the prediction of majority classes, the test accuracy drop on the head classes is well addressed.

Note that Fig. 2 shows the same analysis on the models trained on CIFAR100-LT.
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Figure 2. Analysis of bias in pseudo-labels. We consider FixMatch [18] for linear pseudo-labels, USADTM [9] for semantic pseudo-labels,
and the proposed FixMatch w/ DASO trained on CIFAR100-LT with N1 = 50 with γl = γu = 10.

E.1.2 DASO with class distribution mismatch on traditional SSL learner

We present the analyses of bias in pseudo-labels for the other classic SSL algorithms: MeanTeacher [21] and MixMatch [2]
in Figs. 3 and 4, respectively, in case of uniform distribution of unlabeled data; i.e., γu = 1. In such a case, class distribution
mismatch (i.e., γl ̸= γu) can damage the accuracy of the model.

From the recall curves in Figs. 3a and 4a and the precision curves in Figs. 3b and 4b, the pseudo-labels of the baseline SSL
learners are severely biased towards the head classes, since most of the minority class examples are collapsed to the majority
class ones. The unlabeled data with γu = 1 rather significantly accelerated the bias, to the point where the precision curve is
completely reversed; precision values in the majority classes significantly degraded, compared to the recall curve. Thereby,
the model rarely predicts some of the minority class examples for the test dataset in Figs. 3c and 4c.

In contrast, we demonstrate that DASO can even completely mitigate such a devastating bias, by just coupling the lin-
ear pseudo-labels with the semantic pseudo-labels obtained from the similarity-based classifier. In this case, the semantic
alignment loss Lalign is not applied, due to the absence of advanced augmentation As for MeanTeacher and MixMatch.
Surprisingly, in MeanTeacher (MT) with DASO, the recall and precision values become uniform, resulting in a uniform per-
class test accuracy in Fig. 3c. When combined with MixMatch [2], DASO also recovers the minority-class pseudo-labels
significantly. In final, the averaged test accuracy can be more than doubled (i.e., 37.3%→ 77.2%), as shown in Fig. 4c.

As such, DASO helps alleviate the bias in pseudo-labels, even when the class distributions between labeled and unlabeled
data substantially differ, without accessing the knowledge about the underlying distribution of unlabeled data.



C0 C3 C6 C9
Class index

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

MT (avg: 0.45)
 w/ DASO (avg: 0.86)

(a) Recall of pseudo-labels

C0 C3 C6 C9
Class index

0.4

0.6

0.8

1.0

Pr
ec

isi
on

MT (avg: 0.71)
 w/ DASO (avg: 0.87)

(b) Precision of pseudo-labels

C0 C3 C6 C9
Class index

0

20

40

60

80

100

Te
st

 T
op

1 
Ac

cu
ra

cy
 (%

)

MT (avg: 45.4%)
 w/ DASO (avg: 86.5%)

(c) Class-wise test accuracy

Figure 3. Analysis of bias in pseudo-labels and test accuracy. We consider MeanTeacher (MT) [21], and the proposed DASO applied to
MT (MT w/ DASO) trained on CIFAR10-LT with N1 = 1500 with γl = 100 and γu = 1.
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Figure 4. Analysis of bias in pseudo-labels and test accuracy. We consider MixMatch (MM) [21], and the proposed DASO applied to MM
(MM w/ DASO) trained on CIFAR10-LT with N1 = 1500 with γl = 100 and γu = 1.
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Figure 5. Analysis of predictions from test data via confusion matrix. All the methods are trained on CIFAR10-LT with γ = 100 and
N1 = 500 upon the same fixed random seed. DASO greatly recovers the predictions on the actual minority class examples in test data.

E.2. Confusion Matrix on Test Data

We compare the confusion matrices of the predictions from the test data. From the baseline FixMatch [18], we further
apply our DASO on both FixMatch and FixMatch w/ ABC [15]. As shown in Fig. 5, the predictions on the tail classes (e.g.,
C8 and C9) in FixMatch are severely biased towards the majority classes (e.g., C1). This limits the overall performance,
which is carried by the non-minority classes (68.6%). On the other hand, from the center of Fig. 5, DASO significantly
alleviates the bias towards the head classes observing C8 and C9 classes, while the performances on the other classes are well
maintained. When DASO is integrated with ABC [15] in the right figure, the accuracy values are further improved.

E.3. Train Curves for Recall and Accuracy

We compare the train curves of recall and test accuracy values from FixMatch [18] and FixMatch w/ DASO (Ours) trained
on CIFAR10/100-LT respectively in Figs. 6a and 6b. Here, we plot those from majority classes (e.g., first 20% classes) and
minority classes (e.g., last 20% classes), in addition to the overall values. From both CIFAR10/100-LT benchmarks, DASO
significantly improves the recall and test accuracy values on the minority classes, while relatively maintaining those from the



majority classes. This verifies the efficacy of DASO that specifically handles the biased minority classes in unlabeled data.
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Figure 6. Train curves for the recall and test accuracy values obtained from FixMatch and FixMatch w/ DASO (Ours). The training details
are consistent from the main paper. DASO well reduces the biases on the tail classes, while preserving those from the head classes.

E.4. Further Comparison of Feature Representations

To verify the efficacy of the proposed semantic alignment loss (Lalign), we further visualize the t-SNE [22] of the fea-
ture encoder outputs from FixMatch w/ Lalign in the center of Fig. 7. Compared to FixMatch, applying Lalign without the
class-adaptive pseudo-label blending can already cluster the minority classes (e.g., C6, C8, and C9) in the center of the fig-
ure. However, those indicated clusters lie nearby the head-class clusters (e.g., C0 and C1), where the classifier can still be
confused. In that sense, the complete DASO from the right figure further improves the separability of the tail classes from
the head classes. This demonstrates that while applying the semantic alignment loss Lalign could be helpful for the minority
classes, both class-adaptive pseudo-label blending and Lalign are the essential components for our DASO framework.
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Figure 7. Comparison of t-SNE [22] visualizations of feature representations. We additionally compare the model trained with FixMatch
w/ Lalign between the original FixMatch [18] and FixMatch w/ DASO (Ours). Note that both of the semantic alignment loss Lalign and our
class-adaptive pseudo-label blending contribute to alleviating the bias in pseudo-labels in perspective of feature representation.

E.5. Confidence Analysis from Out-of-class Examples

To investigate the efficacy of DASO pseudo-label, we analyze the confidence of predictions of unlabeled data after training
model with U = Uin + Uout under Semi-Aves benchmark [20]. Fig. 8 visualizes the histograms of entropy values obtained
from either FixMatch [18] or FixMatch w/ DASO, respectively. Note that since both models do not explicitly learn how to
distinguish in-class and out-of-class categories at all, those samples cannot be completely separated in confidence plot.

FixMatch w/ DASO, which learned the blending of linear and semantic pseudo-labels can be effective in that the out-
of-class examples in Uout are further pushed towards the low-confidence region (i.e., higher entropy) compared to the in-
class unlabeled examples in Uin. For example, about 8k out-of-class examples correspond to the most confident samples
in Fig. 8a, while they reduced to 4k with DASO in Fig. 8b. We suppose DASO has the implicit ability to push more examples
corresponding to out-of-class that can cause degradation, towards the low-confident area. This point implies the potential
application of DASO towards an open-set SSL scenario, where SSL algorithms also observe unlabeled data in a broader class
distribution compared to the labels, and learning without harmful out-of-class examples would be important.
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Figure 8. Comparisons of DASO and FixMatch [18] on the distribution of entropy values from the predictions of samples in Uin and Uout of
Semi-Aves benchmark [20], respectively. We observe that examples Uin relatively remain in low-entropy (e.g., high-confidence) area, while
those in Uout are well pushed towards the high-entropy (e.g., low-confidence) area from DASO (ours).
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Figure 9. Overall framework of DASO including the blending of pseudo-labels (DASO PL Blend) and the semantic alignment loss (Lalign).
As explained in Sec. 3.3 of the main paper, ‘balanced prototypes’ for executing the similarity-based classifier are generated from EMA
features of labeled data, which is omitted in this figure. Two main components of DASO framework (blending of pseudo-labels and
semantic alignment loss) can easily integrate with typical semi-supervised learning algorithms such as FixMatch [18] and ReMixMatch [1]
for debiasing pseudo-labels. Note that ‘sg’ means stop-gradient operation.
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