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Appendix
In this appendix we provide additional qualitative and

quantitative results on our approach, along with the tech-
nical details that supplement the main paper. In Sec. Ap-
pendix A, we discuss possible societal impacts of our tech-
nology. Then, we present additional experiments on the
view-consistency of our RGB renderings via image repro-
jection (Sec. Appendix B). We further demonstrate the qual-
ity of our 3D shapes in Sec. Appendix C. In Sec. Ap-
pendix D, we describe the content of the supplementary
videos and introduce a geometry-aware noise injection pro-
cedure to reduce flickering. Next, we discuss implementa-
tion details and the merits of our proposed sampling strat-
egy in (Sec. Appendix E and Appendix F respectively. We
conduct ablation studies on our approach in Appendix G).
Finally, we continue our discussion on our method’s limita-
tions in Sec. Appendix H.

A. Societal Impacts
Image and 3D model-generating technologies (e.g.,

deepfakes) could be used for spreading misinformation
about existing or non-existing people [3, 8]. Our proposed
technology allows generating multi-view renderings of a
person, and might be used for creating more realistic fake
videos. These problems could potentially be addressed by
developing algorithms to detect neural network-generated
content [12]. We refer readers to [11] for strategies of mit-
igating negative social impacts of neural rendering. More-
over, image generative models are optimized to follow the
training distribution, and thus could inherit the ethnic, gen-
der, or other biases present in the training dataset. A pos-
sible solution is creating a more balanced dataset, e.g., as
in [4].

B. View Consistency of RGB Renderings
B.1. Volume Rendering Consistency

The consistent volume rendering from our SDF-based
technique naturally leads to high view consistency of our

Dataset: FFHQ AFHQ

PiGAN [2] 14.7 16.5
Ours (volume renderer) 2.9 2.6

Table 1. Quantitative view-consistency comparison of the RGB
renderings. We evaluate the color error of the RGB volume ren-
derings between the frontal view and the reprojection from a fixed
side view. The error is measured as the median of the per-pixel
mean absolute difference (0 - 255). We average the color incon-
sistency over 1,000 samples for each dataset. Our underlying SDF
geometry representation promotes superior 3D consistency. (also
see Fig. 1).

RGB renderings. To show the superior 3D-consistency of
our SDF-based volume rendering, we measure the reprojec-
tion error when a side view pixels are warped to the frontal
view. We randomly sample 1,000 identities and render the
depth and RGB images at 256×256 and set the side view to
be 1.5× the standard deviation of the azimuth distribution in
training (which is 0.45 radians for FFHQ and 0.225 radians
for AFHQ). We reproject the side-view RGB renderings to
the frontal view using the side-view depth, and we do not ig-
nore occluded pixels. We measure color inconsistency with
the median of pixel-wise L1 error in RGB (0 - 255), aver-
aged over the 1,000 samples. The use of median effectively
removes the large errors coming from occlusions. Note that
since PiGAN is trained with center-cropped FFHQ images
(resized to 320× 320 and center-cropped to 256× 256), we
apply the same transformation on our results before com-
puting the median.

As shown in Tab. 1, StyleSDF presents significantly im-
proved color consistency compared to the strongest current
baseline, PiGAN [2]. Fig. 1 shows the sample depth and
color rendering pairs used for the evaluation, along with the
pixelwise error maps. The error maps demonstrate that our
volume RGB renderings have high view consistency, as the
large reprojection errors are mostly in the occluded regions.
On the other hand, PiGAN’s reprojections do not align well
with the frontal view, showing big errors also near the eyes,
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Figure 1. Qualitative view consistency comparison of RGB renderings. We project the rendering from a side view using its corresponding
depth map to the frontal view. We compare the reprojection to the frontal-view rendering and compute the error map showing mean
absolute difference in RGB channels (0 - 255). Our SDF-based technique generate superior depth quality and significantly improves the
view-consistency of the RGB renderings. Most of our errors concentrate on the occlusion boundaries whereas PiGAN’s errors spread
across the whole subject (e.g., eyes, mouth, specular highlights, fur patterns).

mouth, in presence of specular highlights, etc.

B.2. High-Resolution RGB Consistency

In Fig. 2, we present the reprojection experiment results
using our high-resolution RGB outputs. As in the volume
rendering consistency experiment, we reproject the RGB
pixels from non-frontal views (with varying azimuth and
elevation) to the frontal views. The results demonstrate the
strong 3D-consistency of our high-resolution images, as the
reprojected non-frontal images are similar to the frontal ren-
derings. However, as mentioned in the limitation section of

the main paper, the current implementation of StyleGAN2
comes with significant aliasing of the high-frequency com-
ponents, resulting in noticeable pixel errors on regions with
high-frequency details, e.g., hair, ears, eyes, etc. To iden-
tify the errors in the high-frequency details, we visualize
the mean reprojection images. I.e. we project non-frontal
views and average the pixel values across views. As can be
seen in Fig. 3, the mean reprojection images closely repli-
cate the identities and important structures of the frontal
view, demonstrating strong view-consistencies. The error
map confirms that most of the errors are concentrated on



Frontal ϕ = −0.45 ϕ = −0.3 ϕ = −0.15 ϕ = 0.15 ϕ = 0.3 ϕ = 0.45 θ = −0.225 θ = −0.15 θ = −0.075 θ = 0.075 θ = 0.15 θ = 0.225

Figure 2. View-consistency visualization of high-resolution renderings. We use the side-view depth maps (first rows) to warp the side-
view RGB renderings (second rows) to the frontal view (first column). The reprojected pixels that pass the occlusion testing are shown
in the third row. We compare the reprojections with the frontal-view renderings and show the per-pixel error maps (fourth rows). Our
reprojections well align with the frontal view with errors mostly in the occlusion boundaries and high-frequency details.

the high-frequency noise of the StyleGAN generator.

C. Qualitative 3D results
We demonstrate the consistency of our 3D representa-

tion by overlaying the point clouds from the frontal and side
view depth maps (Fig. 4b). The visualization, shown in two
different colors, clearly shows high consistency between the
depth maps. To show the quality and plausibility of our 3D
models, we extract meshes on our SDFs via marching cubes
and visualize them in extreme angles (Fig. 4c).

D. Video Results
Since our 3D-consistent high-resolution image genera-

tion can be better appreciated with videos, we have at-
tached 24 sequences in the supplementary material, featur-
ing view-generation results on the two datasets using two
different camera trajectories. For each identity, we provide
two videos, one for RGB and another for depth rendering.

The videos are presented in the project’s website.

D.1. Geometry-Aware StyleGAN Noise

Even though the images shown in the main paper on
multi-view RGB generation look highly realistic, we note
that for generating a video sequence, the random noise of
StyleGAN2 [6], when naı̈vely applied to 2D images, could
result in severe flickering of high-frequency details between
frames. The flickering artifacts are especially prominent for
the AFHQ dataset due to high-frequency textures from the
fur patterns.

Therefore, we aim at reducing this flickering by adding
the Gaussian noise in a 3D-consistent manner, i.e., we want
to attach the noise on the 3D surface. We achieve this by
extracting a mesh (at 128 resolution grid) for each sequence
from our SDF representation and attach a unit Gaussian
noise to each vertex, and render the mesh using vertex col-
oring. Since higher resolution intermediate features require
up to 1024×1024 noise map, we subdivide triangle faces of
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Figure 3. Color consistency visualization with mean faces. We reproject the RGB renderings from the side views to the frontal view (as
in Fig. 2). We show the mean reprojections that pass the occlusion testing and their differences to the frontal-view renderings. The mean
reprojections are well aligned with the frontal rendering. The majority of the errors are in the high-frequency details, generated from the
random noise maps in the StyleGAN component. This demonstrates the strong view consistency of our high-resolution renderings.

(a) Color (b) Overlaid Depth Maps (c) Extracted Marching Cubes

Figure 4. Consistent and plausible 3D shapes. (a) Color images. (b) Overlaid point clouds extracted from frontal and side view depth
maps. (c) Marching cubes meshes, rendered from extreme angles.

the extracted mesh once every layer, starting from 128×128
feature layers. The video results show that the geometry-
aware noise injection reduce the flickering problem on the
AFHQ dataset, but noticeable flickering still exist. Further-
more, we observe that the geometry-aware noise slightly
sacrifices individual frame’s image quality, presenting less
pronounced high-frequency details, likely due to the change
of the Gaussian noise distribution during the rendering pro-
cess. The videos rendered with geometry-aware noise can

be viewed at the project’s website.

E. Implementation Details
E.1. Dataset Details

FFHQ: We trained FFHQ with R1 regularization loss of 10.
The camera field of view was fixed to 12◦ and its azimuth
and elevation angles are sampled from Normal distributions
with zero mean and standard deviations of 0.3 and 0.15 re-
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Figure 5. We compare extracted meshes using our sampling strategy vs. stratified sampling. Note the noise induced by stratified sampling.
(zoom in for details)

spectively. We set the near and far fields to [0.88, 1.12] and
sample 24 points per ray during training .We trained our
volume renderer for 200k iterations and the 2D-Styled gen-
erator for 300k iterations.

AFHQ: The AFHQ dataset contains training and validation
sets for 3 classes, cats, dogs and wild animals. We merged
all the training data into a single training set. We apply
R1 regularization loss of 50. Both azimuth and elevation
angles are sampled from a Gaussian distribution with zero
mean and standard deviation of 0.15 and a camera field of
view of 12◦. The near and far fields as well as the number
of samples per ray are identical to the FFHQ setup. Our
volume renderer as well as the 2D-Styled generator were
trained for 200k iterations.

E.2. Training Details

Sphere Initialization: During our experiments we have no-
ticed that our SDF volume renderer can get stuck at a local
minimum, which generates concave surfaces. To avoid this
optimization failure, we first initialize the MLP to generate
an SDF of a sphere centered at the origin with a fixed radius.
We analytically compute the signed distance of the sampled
points from the sphere and fit the MLP to match these dis-
tances. We run this procedure for 10k iterations before the
main training. The importance of sphere initialization is
discussed in Appendix G.

Training setup: Our system is trained in a two-stage strat-
egy. First, we train the backbone SDF volume renderer on
64×64 images with a batch size of 24 using the ADAM [9]
optimizer with learning rates of 2 ·10−5 and 2 ·10−4 for the
generator and discriminator respectively and β1 = 0, β2 =
0.9. We accumulate gradients in order to fit to the GPU
memory constraints. For instance, a setup of 2 NVIDIA
A6000 GPUs (a batch of 12 images per GPU) requires the
accumulation of two forward passes (6 images per forward
pass) and takes roughly 3.5 days to train. We use an expo-
nential moving average model during inference.

In the second phase, we freeze the volume renderer
weights and train the 2D styled generator with identical
setup to StyleGAN2 [7]. This includes ADAM optimizer
with 0.002 learning rate and β1 = 0, β2 = 0.99, equalized
learning rate, lazy R1 and path regularization, batch size of
32, and exponential moving average. We trained the styled
generator on 8 NVIDIA TeslaV100 GPUs for 7 days.

F. Sampling Strategy
NeRF [10], along with existing 3D-aware GANs like Pi-

GAN [2], rely on hierarchical sampling strategy for obtain-
ing more samples near the surface. Our use of SDFs al-
lows sampling the volume with smaller number of samples
without sacrificing the surface quality, thereby reducing the
memory footprints and simplifying the implementation.

Stratified sampling randomizes the distance between ad-
jacent samples along each ray, adding undesired noise to the
volume rendering (Fig. 5). The randomness also amplifies
flickering in RGB videos. Our sampling strategy ensures
that the integration intervals are of the same length, which
eliminates the noise and results in smoother volume render-
ing outputs.

G. Ablation studies
We perform two ablation studies to show the necessity

of the minimal surface loss (see main paper) and the sphere
initialization. As can be seen in Figure 6, on top of prevent-
ing spurious and non-visible surfaces from being formed,
the minimal surface loss also helps to disambiguate between
shape and radiance. Penalizing values that are close to zero
essentially minimizes the surface area and makes the net-
work prefer smooth SDFs.

In Figure 7, we show the importance of the sphere initial-
ization in breaking the concave/convex ambiguity. Without
properly initializing the weights, the network gets stuck at a
local minimum that generates concave surfaces. Although
concave surfaces are physically incorrect, they can perfectly
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Figure 6. Minimal surface loss ablation study. We visualize the volume rendered RGB and depth images from volume renderers trained
with and without the minimal surface loss. The Depth map meshes are visualized from the front and side views. Note how a model trained
with the minimal surface loss generates smoother surfaces and is less prone to shape-radiance ambiguities, e.g., specular highlights are
baked into the geometry.
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Figure 7. Sphere initialization ablation study. We visualize volume-rendered RGB and depth images from volume renderers trained with
and without sphere initialization. The Depth map meshes are visualized from the front and side views. Note how a model trained without
model sphere initialization generates concave surfaces.

explain multi-view images, as they are essentially the ”mir-
ror” surface. Concave surfaces cause the images to be ren-
dered in the opposite azimuth angle, an augmentation that
the discriminator cannot detect as fake. Therefore, the gen-
erator cannot recover from the this local minima.

H. Limitations (continued)

As mentioned in the main paper, our high-resolution
generation network is based on the implementation of Style-
GAN2 [6], and thus might experience the same aliasing and
flickering at regions with high-frequency details (e.g., hair),
which are recently addressed in Alias-free GAN [5] or Mip-
NeRF [1]. Moreover, we observe that the reconstructed ge-
ometry for human eyes contain artifacts, characterized by

concave, instead of convex, eye balls. We believe that these
artifacts often lead to slight gaze changes along with the
camera views. As stated in the main paper, our current
implementation of volume rendering during inference uses
fixed frontal view directions for RGB queries c(x,v), and
thus cannot express moving specular highlights along with
the camera.

I. Additional Results

We show uncurated set of images generated by our net-
works (Fig. 8).



Figure 8. Uncurated high-resolution RGB images that are randomly generated by StyleSDF.
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