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1. Details on the Experimental Settings
In this section we describe further details on our

model training and evaluation settings. Our implemen-
tations and saved model checkpoints are available at:
https://github.com/IGITUGraz/OutputCodeMatching.

1.1. Datasets and Preprocessing

We used CIFAR-10, CIFAR-100 and ImageNet datasets
in our experiments. CIFAR-10 and CIFAR-100 datasets [3]
both consist of 50,000 training and 10,000 test images,
each one belonging to one of 10 or 100 classes. Ima-
geNet dataset [8] consists of 1,281,167 training images, and
50,000 validation images from 1000 classes. Note that we
used the readily available validation set of the original Ima-
geNet database as our test set. We follow the conventional
data augmentation pipelines for both datasets during model
training. Specifically for CIFAR-10 and CIFAR-100 we
randomly cropped the images into 32×32 dimensions by
padding zeros for at most 4 pixels around it, and randomly
performed a horizontal flip. For ImageNet we randomly
cropped the images and resized them back to 224×224 di-
mensions, also followed by a random horizontal flip. We
normalized the image pixel values using the conventional
metrics estimated on the training set of each dataset.

1.2. Optimization Configurations

We performed parameter optimization for all models
using stochastic gradient descent (SGD) with momentum.
Models were trained for 160 epochs with a batch size of 128
on CIFAR-10 and CIFAR-100, whereas a batch size of 256
was used for models on ImageNet. We used a piecewise
constant decay learning rate with the initial learning rate
set to 0.1 and divided by 10 during optimization when 50%
and 75% of the total number of epochs are completed. A
weight decay constant of 0.0005 for CIFAR-10 and CIFAR-
100, and 0.0001 for ImageNet were used for all models that
are trained to minimize softmax cross-entropy loss which
yielded the best performance. For all output code matching

(OCM) models which were trained end-to-end under the l1-
distance loss objective, a weight decay constant of 0.0001
was used as it resulted in higher clean test accuracies.

In CIFAR-10/100 experiments, OCM networks were
trained end-to-end from scratch for 160 epochs. We per-
formed OCM for ResNet-50 models trained on ImageNet
by finetuning pre-trained networks. Specifically, we used
the feature encoder weights of pre-trained vanilla models
(trained for 100 epochs using the momentum SGD config-
uration described earlier) in an equivalent OCM network
which had a different output dense layer with the new code
length dimensionality. Output dense layer was hence rede-
fined starting from random initialization, and all the weights
until the output dense layer of the pre-trained network was
used to initialize the feature encoder parameters. We then
finetuned OCM models for a duration of 60 epochs using an
Adam optimizer with an initial learning rate of 0.001, and
the same piecewise constant decay schedule.

All code and software were implemented with the Py-
Torch 1.9.0 library [5], and experiments were performed us-
ing GPU hardware of types NVIDIA GeForce GTX 2080Ti,
NVIDIA A40, NVIDIA Quadro P8000 and P6000.

1.3. Designing Bit String Output Codes

Our output code matching approach uses bit strings Sy ∈
{−1, 1}N of length N for each class y ∈ {1, . . . , C}, such
that the network predicts this code instead of the usual
one-hot encoded target vector. To reduce attack stealth-
iness we use output codes that are partially overlapping
across classes. We used Hadamard matrices constructed via
Sylvester’s method to obtain matrices of order 2k for our
design of partially overlapping bit string codes [9]. Specifi-
cally, Sylvester’s construction iteratively obtains H2k by:

H2 =

[
1 1
1 −1

]
, H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
, (1)

which for any H2k then yields H2kHT
2k = 2kI2k . While

the Hamming distance between the output representations
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of any two class is 2 for conventional one-hot encoding, us-
ing Hadamard-type coding ensures that the Hamming dis-
tance between any two codes is N/2 [6, 9]. For classifica-
tion problems with C-classses where C is not a power of 2,
we randomly selected C rows of the N ×N Hadamard ma-
trix. For instance the following bit string codes were used
for OCM16 ResNet-20 models trained on CIFAR-10:

S1 = [ 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 ] ,

S2 = [ 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 ] ,

S3 = [ 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 ] ,

S4 = [ 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 ] ,

S5 = [ 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 ] ,

S6 = [ 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 ] ,

S7 = [ 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 ] ,

S8 = [ 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 ] ,

S9 = [ 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 ] ,

S10 = [ 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 ] .

Here, each class code bit string corresponds to one row
of the Hadamard matrix of order 16, i.e., H16. Note that the
first index of all the codes are always 1 in this case, meaning
that the outputs would in fact be effectively treated as 15-
dimensional codes to be predicted as the output of the first
neuron will not change for any class in the training set.

1.4. Attack Configurations

Stealthy T-BFA: Attacker requires a set of source class
samples Dsrc and auxiliary samples Daux from other classes
to realize T-BFA. We determined the size of the sets Dsrc
and Daux in accordance with the original implementation1

in [7]. For a targeted attack from source class s → t, we
used half of all the samples from class s available in the
the test split of the dataset. More specifically for CIFAR-
10 we used 500 samples for Dsrc from class s, and another
500 samples for Daux from any other class except s. In the
same manner, for CIFAR-100 we used 50 samples and for
ImageNet we used 25 samples for both Dsrc and Daux.

Using these samples we run stealthy T-BFA attacks un-
til the attacker achieves 100% accuracy over all samples
in Dsrc to be classified as t. We report attack success rate
(ASR) as an attack generalization measure in our results,
estimated as the accuracy of the held-out samples in the test
set belonging to class s (e.g., for CIFAR-10 the unused 500
test samples belonging to class s) to be also classified as
class t under the attacked model. We calculate post-attack
accuracy (PA-ACC) for T-BFA on the test set except the
samples from class s and used auxiliary samples in Daux.

For CIFAR-100 and ImageNet, only the first 50 classes
were considered as a target or source class in the attacks.

1https://github.com/adnansirajrakin/T-BFA

We used each of the 50 classes as the source class twice,
with the attack aiming to misclassify the source class im-
ages as either the previous or next class label (i.e., c1 → c50,
c1 → c2, c2 → c1, c2 → c3, . . .). Each of these source-to-
target settings were also repeated five times by changing
the random choice of the auxiliary set Daux, and the sam-
ples drawn from the source class for Dsrc. This yielded a set
of 500 T-BFA experiments for CIFAR-100 and ImageNet.
For CIFAR-10, we performed T-BFA similarly using all 10
classes as the source or target in 100 experiments (i.e., five
repetitions of 20 source-to-target settings). Therefore all
evaluation metrics are averaged over 500 experiments for
CIFAR-100 and ImageNet, and 100 for CIFAR-10.

Stealthy TA-LBF: For each TA-LBF experiment the at-
tacker requires a single source sample and auxiliary samples
Daux from the test set. We randomly draw 64 samples from
the test set (belonging to any class) to construct an auxiliary
set for each experiment. We evaluated TA-LBF on CIFAR-
10 using 1000 single sample attacks2 in total, where each
one of the 10 classes is the target class for 100 different
source images belonging to any other class. For stealthy
TA-LBF we calculate ASR as the percentage of successful
attacks across the 1000 attacks, and PA-ACC as the accu-
racy on the test set except the single attack source sample
and the auxiliary samples used for attack optimization.

Section 3 details our formulation of the TA-LBF at-
tack optimization objective, as the attack was trivially non-
applicable to OCM networks due to its reliance to individ-
ual logits of the output softmax, which does not exist in
OCM networks. We reported TA-LBF evaluations only for
CIFAR-10 as our experiments with the adjusted TA-LBF
attack revealed same evaluation results only for ResNet-20
models on CIFAR-10 as in [1]. We could not obtain suc-
cessful TA-LBF attacks (i.e., ASR <5%) for the larger net-
works we used for CIFAR-100 and ImageNet.

2. Stealthy T-BFA Attacks on OCM
Stealthy T-BFA [7] attacks aim to misclassify the sam-

ples belonging to source class s as a target class t by solving
the following optimization objective:

min
B̂

EDsrc

[
L(f(x; B̂); t)

]
+ EDaux

[
L(f(x; B̂); y)

]
, (2)

with f(x; B̂) being the quantized DNN output and L the
DNN training loss function, using a set of auxiliary samples
Daux and a set of source class samples Dsrc. The solution
is approximated by [7] using a heuristic progressive inter-
and intra-layer bit search algorithm based on ranking the
gradient of the training loss function.

For OCM we also used the DNN training loss LOCM for
the attacks as proposed in the original formulation [7], i.e.,

2https://github.com/jiawangbai/TA-LBF
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l1-norm of the distance between the target and the network
output, yielding the stealthy T-BFA objective on OCM:

min
B̂

EDsrc

[
|f(x; B̂)− St|

]
+EDaux

[
|f(x; B̂)− Sy|

]
, (3)

where St is the output code for the target class, and Sy is the
correct output code for x from class y that is sampled from
Daux. For vanilla networks and models trained with piece-
wise clustering, we use the standard softmax cross-entropy
loss for L(f(x; B̂); y) in the attacks as in [7].

3. Stealthy TA-LBF Attacks on OCM
We denote the DNN output f(x;B) as a composition of

g(x; {Bl}L−1
l=1 ), the output classification layer with quan-

tized weights WL, and output activation φ(.). In a stan-
dard DNN, φ(z) denotes a softmax activation with z being
the pre-softmax logits. Stealthy TA-LBF [1] attacks aim to
misclassify a single source sample as a target class t under
the constraint dH(B, B̂) ≤ k, by solving the objective:

min
B̂

L
Leff + γ EDaux

[
L(f(x; B̂); y)

]
, (4)

where L is the training loss, k is the number of maximum
bit-flips and γ is the trade-off parameter between stealthi-
ness and the effectiveness loss Leff given by:

Leff = max(zm − zt + η, 0) +max(zs − zm + η, 0), (5)

with η a chosen margin parameter for pre-softmax logits,
and zm = max

i∈{0,...,C}\{s}
zi, i.e., the second largest logit

value for the source sample. The loss in Eq. (5) is mini-
mized when both the pre-softmax target class logit zt be-
comes greater than zm + η, and the source class logit zs
becomes less than zm − η. Thus, TA-LBF effectiveness
significantly depends on changing the ranking of logits, as
softmax assigns the highest probability to the largest logit.

One-hot encoding with independent logits does not exist
in OCM. Therefore the original TA-LBF formulation is triv-
ially non-applicable to our networks. To allow comparisons
we re-formulate Eq. (4) under the same constraints as:

min
B̂

L
Lbce(f(x; B̂); t) + γ EDaux

[
Lbce(f(x; B̂); y)

]
, (6)

where Lbce computes the average of the binary cross-
entropies across the N output units for OCM. To realize the
binary cross-entropy computation, we interpret the OCM
network output as one that has element-wise sigmoid ac-
tivations where φ(z) ∈ [0, 1], and consider the bit string
codes as Sy ∈ {0, 1}N . We solve the constrained opti-
mization objective from Eq. (6) using lp-box alternating di-
rection method of multipliers (ADMM) [11], in the same
way as implemented by [1]. Note that for vanilla and piece-
wise clustering models, we also use the modified attack with

Table 1. Stealthy T-BFA evaluations on ImageNet with ResNet-50
models (8-bit) trained with various regularization strength param-
eters λ for the piecewise clustering defense. Results in bold, yield-
ing the highest # bit-flips, are presented in the main manuscript.

Piecewise Clustering for ResNet-50

λ = 0.001 λ = 0.0005 λ = 0.0001

Tr
ai

ni
ng

fr
om

sc
ra

tc
h Clean 63.28 68.73 74.64

ASR 89.31 89.32 91.29
PA-ACC 48.72 54.81 57.64
# bit-flips 44.15 48.65 26.24

Fi
ne

tu
ni

ng
pr

e-
tr

ai
ne

d Clean 73.74 74.61 75.90

ASR 88.14 88.88 90.31
PA-ACC 49.46 51.02 53.91
# bit-flips 30.34 23.78 15.66

Eq. (6), where Lbce is replaced by Lxent, i.e., standard cross-
entropy loss function. Our experiments with this adjusted
attack revealed same CIFAR-10 evaluation results for the
vanilla and piecewise clustering defended ResNet-20 mod-
els as reported in [1]. However we could not obtain suc-
cessfully converging attacks for the larger networks we used
for CIFAR-100 and ImageNet (which were not considered
in [1]), despite our explorations with various parameter set-
tings. We also did not obtain successful attacks on OCM
when we considered the l1-distance based LOCM for Eq. (6).

We perform a similar parameter search as in [1] to find
the optimal k and γ for each source sample to be attacked.
We start from an initial value of k = 5 and γ = 100, and
evaluate the attack until it is successful by multiplying γ
with 0.5 at most 8 times. If the attack was not yet successful
then we multiply k with 2 to similarly search again for γ.
We perform the outer loop search for k 6 times. If the source
sample is not classified as the target class t as a result of the
manipulated B̂ for any k and γ combination, we consider
the attack to be unsuccessful for this source sample.

4. Piecewise Clustering Hyperparameters
We performed experiments with the piecewise clustering

defense [2] in accordance with the public implementation 3.
Piecewise clustering trains quantized DNNs using a regu-
larization term to enforce the quantized weights to have a
bi-modal distribution, yielding the optimization problem:

argmin
{Wl}L

l=1

Lxent
(
f(x; {Wl}Ll=1) ; y

)
+

λ ·
L∑

l=1

(
||W+

l −E(W+
l )||2 + ||W−

l −E(W−
l )||2

)
,

(7)

3https://github.com/elliothe/BFA
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(a) CIFAR-10 with ResNet-20
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(b) CIFAR-100 with WRN-28-4
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Figure 1. Comparisons of stealthy T-BFA attack success rate (ASR) when the maximum allowed number of bit-flips by the attacker
gradually increase. Models (8-bit) correspond to same networks evaluated in the main manuscript [4]. PC denotes the piecewise clustering
defense. Shaded regions around the mean curve denotes ±0.25 standard deviation.

where Lxent represents the standard cross-entropy loss func-
tion, λ is the regularization coefficient, W+

l and W−
l de-

note the positive and negative weight components of Wl.
For CIFAR-10 and CIFAR-100 we used a piecewise

clustering regularization constant of λ = 0.001. This λ was
the common choice in [1,2] for similar ResNet models, and
we also did not obtain better models with different choices.

Nevertheless, we varied our choice of λ for the larger
ResNet-50 models trained on ImageNet (both by end-to-
end training from scratch, and by finetuning pre-trained
networks) to examine model robustness, and obtained bet-
ter models with λ = 0.0005. Table 1 presents our explo-
rations of ResNet-50 models (8-bit) with piecewise cluster-
ing, where we explored same λ values as in [1,2]. Our main
observation was the large difference in robustness when we
trained a ResNet-50 from scratch via piecewise clustering,
as opposed to using a pre-trained network to be finetuned
for a shorter amount of epochs. We performed finetun-
ing of vanilla models (which were trained for 100 epochs)
with piecewise clustering regularization for 60 epochs using
an Adam optimizer with an initial learning rate of 0.0001,
similar to our pipeline to obtain large-scale OCM models.
Overall, as depicted in Tab. 1, faster training by finetuning
did not yield significant robustness with piecewise cluster-
ing as opposed to the end-to-end regularized training from
scratch (e.g., for λ = 0.0005 the # bit-flips was 2× larger).
We observed higher benign accuracies with finetuning that
were close to the clean accuracy of the vanilla model, how-
ever with significantly less robustness in terms of the nec-
essary number of bit-flips by a stealthy T-BFA attacker.

5. Constraining the Number of Bit-Flips

We investigate the stealthy bit-flip attack impact as the
maximum number of allowed bit-flips gradually increase.
Figure 1 denotes the increase in stealthy T-BFA ASR for all
(8-bit) models trained on the three datasets. Note that the fi-
nal evaluation metrics presented in the main manuscript [4]
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Figure 2. Comparisons of T-BFA attack stealthiness observed via
PA-ACC, when the maximum allowed number of bit-flips by the
attacker gradually increase. Results are shown for the ResNet-20
models (8-bit) on CIFAR-10 (shading: ±0.25 standard deviation).

are the results obtained when the attacks are run until all
source class set examples used by the stealthy T-BFA at-
tacker are misclassified. Results show that our approach
yields superior longitudinal resilience against the attacks as
the number of bit-flips gradually increase. This robustness
is even more pronounced when both defenses are combined
(see OCM16+PC in Fig. 1a). Figure 2 depicts an illustration
of the early decrease in PA-ACC stealthiness with our re-
sults from the ResNet-20 models (8-bit) on CIFAR-10. Our
results in the main manuscript [4] presented that PA-ACC
was significantly lower for our models when attacks are run
until they are successful on all Dsrc samples (PA-ACC for
vanilla: 84.38%, PC: 76.78%, OCM16: 53.22%, OCM64:
46.39%, OCM16+PC: 47.88%). Observations in Fig. 2 indi-
cate that this decrease in PA-ACC occurs mainly within the
early bit-flips, creating a large pre- and post-attack accuracy
gap to break stealthiness even if the attacks are successful.

6. Additional Experiments
We explored the effectiveness of our approach with re-

spect to using mixup [12] and manifold mixup [10] learn-
ing principles to regularize DNNs towards having decision
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boundaries that transition linearly across classes and thus
providing smoother uncertainty estimates. In principle, our
approach of using overlapping output representations pro-
motes a similar behavior by flattening learned represen-
tations across classes. However our defense is effective
against stealthiness because the network is expected to pre-
dict target bit strings that are partially overlapping across
classes, at test time as well. We performed experiments on
CIFAR-10 with an 8-bit quantized ResNet-20, using mixup
with α = 1 [12], and manifold mixup with α = 2 [10].
Required number of bit-flips (↑) for stealthy T-BFA were
on average 28.9 and 52.3 respectively for mixup and mani-
fold mixup, whereas it was 95.7 for OCM16 (and 281.8 for
OCM64). For these attacks, resulting PA-ACC (↓) values
were 68.2% and 67.5% for the mixup methods, whereas
it was 53.2% for OCM16. Under stealthy TA-LBF num-
ber of bit-flips required for the attacker were on average
5.7 and 7.6 respectively for mixup and manifold mixup,
whereas it was 31.1 for OCM16. For these attacks the re-
sulting PA-ACC values were 89.5%, 86.6% and 86.5% re-
spectively. Thus, we demonstrated that the effectiveness of
OCM mainly arises from using overlapping codes at test
time, as sketched in Fig. 2 of the main manuscript [4].
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