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In this appendix, we provide additional details for our
test-time optimization in Sec. 1, and then present an abla-
tion study on the use of our pose encoder for pose code
initialization in Sec. 1.1. In Sec. 2 we present a quantitative
comparison with IP-Net [1]. Additional qualitative evalua-
tions and results are shown in the supplemental video.

1. Test-time Optimization
In Eq. 6 in the main paper we present the energy term

that is minimized at test-time when fitting our SPAMs to a
depth sequence, which we rewrite here for completeness:
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As mentioned in the paper, Lc enforces shape and pose code
regularization through an ℓ2 loss on the latent codes:
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with σ2
s = 0.01, σ2

p = 0.001.
Lt enforces temporal regularization between the current

frame j and its neighboring frames H = {j − 1, j + 1}. As
in [3], this is enforced with an ℓ2-loss on the pose MLP flow
predictions for points xk, and controlled with a weight of
λt = 10:
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As presented in the Sec. 3.5.1 in the main paper, we

employ a part-guided ICP-inspired loss Licp. We recall
that Licp is computed by establishing part-driven correspon-
dences between each estimated part q from the predicted
input depth map part labels and the part decoder predic-
tions. To this end, every Iresample iterations we consider the
canonically-posed shape from the current state of the shape
codes, re-sample a new set of Nt = 500k points around
the mesh and keep those within a distance ϵicp = 0.005

(in normalized units), denoted by xns
k , from the implicitly

represented surface. We use our part decoder (Sec. 3.5 in
the main paper) to estimate part labels for these canonical
points, and then warp them into a posed frame j using our
pose decoders. Then for every point in the input depth map
x′ ∈ Dj , and given its predicted part q (obtained by Point-
Net++), we find its nearest neighbor in the warped set of
points belonging to q based on fθq , denoted by
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to establish correspondences, and minimize the distance be-
tween these points:
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In the above equation, NNWq
(·) denotes a function that

queries the nearest neighbor of a 3D point in a set of points
Wq. We control the importance of this loss with λicp = 20
in our experiments.

Finally, we control Lr (Eq. 7 in the main paper) with
λr = 1.

Optimizing over an input sequence of 90 frames un-
til convergence (for 200 optimization steps) takes approx-
imately 1.5 hours on a GeForce RTX 3090 with our highly
unoptimized implementation.

1.1. Effect of Pose Code Initialization

We study the effect of pose code initialization in Fig. 1.
For a given frame, we study how optimization evolves
across different optimization steps for NPMs* [3] (with and
without pose encoder initialization) and our SPAMs (with
and without pose encoder initialization). Our part basis
helps to establish global correspondences that provide ro-
bustness against lack of good pose initialization.

2. Additional Comparisons to State of the Art
In Fig. 3 we show a qualitative comparison with IP-Net

and NPMs* on one of our test sequences; we show superior
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Figure 1. For a given frame, we study how optimization evolves across different optimization steps for NPMs* (with and without pose en-
coder initialization) and our SPAMs (with and without pose encoder initialization). Note that SPAMs are robust to pose code initialization,
and can recover tracking even when starting from randomly initialized pose codes.
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Figure 2. Comparison to the state-of-the-art NPMs* [Palafox et al. 21] on the task of model fitting to a monocular depth sequence from
real CAPE scans [2], demonstrating the applicability of SPAMs to real data, capturing finer-scale details in the hands and face.

Method IoU ↑ C-ℓ2 ↓ NC ↑ EPE ↓
NPMs* 0.808 0.0000347 0.895 0.0090

Ours (w/o ICP, w/o PE) 0.675 0.0010797 0.828 0.0387
Ours (w/o PE) 0.777 0.0000769 0.881 0.0138
Ours (w/o ICP) 0.815 0.0000371 0.895 0.0085
Ours 0.813 0.0000268 0.900 0.0079

Table 1. Quantitative evaluation on real human data from the
CAPE [2] dataset.

performance in loop closing, demonstrating our tracking ro-
bustness while maintaining detailed geometry.

We also show a quantitative and qualitative compari-
son on CAPE [2]. In this experiment, we have taken
the pre-trained models of our approach and NPMs* on
RenderPeople and fine-tuned both methods on CAPE data
(unlike the CAPE experiments from NPMs which were
trained on a mixture of CAPE, AMASS, and Mixamo). As
shown in Table 1 and Figure 2, our approach achieves su-
perior performance both quantitatively and qualitatively in
comparison with NPMs* (e.g., finer details of the fingers
and faces).
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Figure 3. Qualitative comparison to NPMs* [3] and IP-Net [1] on the task of model fitting to a monocular depth sequence. In complex
motion scenarios such as loop closures, NPMs* and IP-Net struggle to track the motion, whereas our SPAMs robustly maintains tracking.


