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Abstract

1. Overview of Supplementary Material

The supplementary material contains the following:

* Implementation details (Section 2)

¢ Detailed results from calibration experiment (Table 4)
* Detailed results for the BA experiment (Section 3)

* Evaluation with GT principal point (Section 4)

* Dataset details (Table 1)

* Additional qualitative results (Figure 4)

2. Implementation Details

Neighborhood selection. To construct the residuals in
the regularizer, we select the £ = 2m closest neighbours
symmetrically around each point. To avoid the instabil-
ity from the denominator vanishing, a minimum distance
0Tmin to the closest neighbor is enforced. Further, since the
locally linear assumption fails when the distance between
two neighbors is too large, 07,4, is set to ensure the dis-
tance of that falls below a threshold.

Parameters. In our experiments, 7, is set to be 1 px,
while 7,4, 18 set to be 100 px. The number of neighbors
is chosen to be 4 since it provides a good trade-off between
redundancy in the fitting and the sparsity pattern. This is
evaluated in the ablation study in the main paper.

Outlier filtering. Given an initial pose estimate we pro-
pose to filter outliers in a similar fashion as in [1], using
a sliding median filter on the computed f;. Points where
fi deviate significantly from the median of the local neigh-
bourhood (n = 4) are removed. The threshold is set as
k = 3 x 1.4826 times the median error, which correspond
to the 99.7% confidence interval assuming the deviations
are normally distributed.
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3. Evaluation of Bundle Adjustment

The proposed bundle adjustment method optimizes a sur-
rogate problem in each iteration to enable use of the Schur
complement trick. However, this inner optimization prob-
lem does not minimize the true cost. Figure 1 and Figure 2
show the cost across iterations for bundle adjustment with
and without groundtruth principal point. One can observe
spikes and energy steps due to the imperfection of the ap-
proximation, but still, the surrogate problem is a good ap-
proximation and the cost for outer iterations converges al-
most monotonically as shown in the plots.

4. Impact of Estimated Principal Point

For all the experiments in the paper we estimate the prin-
cipal point by first assuming it is in the center of the image.
The principal point is then refined by minimizing the radial
reprojection error (see Section 4 in the main paper). For
comparison we here show the results using the ground truth
principal point (as used in the reference StM model). See
Table 2 and Table 3. Experiments for optimization with es-
timated principal point are also listed for reference. Simi-
larly, the proposed method consistently outperforms the the
Camposeco et al. [1] when ground truth principal point is
used. The improvement for estimation of pose for dataset
Kazan and Doge Palace using ground truth principal point
is significant, which is due to the poor estimation of princi-
pal point. In Figure 1 we show the cost across iterations for
bundle adjustment using ground truth principal point, and
that with estimated principal point can be found in Figure 2.
Cumulative reprojection error plots for bundle adjustment
with / without groundtruth principal points can be found in
Figure 3. Generally, optimizations with groundtruth princi-
pal point give better error, and the difference is more sig-
nificant when the estimation of principal point is less accu-
rate. Empirically we found that the principal point refine-
ment works slightly better if points close to the center are
downweighted in the optimization (as the radial reprojec-
tion error is very sensitive to principal point shifts for these
correspondences).



Checkerboard calib. images [3] github.com/ylochman/babelcalib

Doge Palace and Kazan [4] www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
Grossmunster and Kirchenge [2] github.com/vlarsson/radialsfm

Aachen Day-Night [5,6] https://www.visuallocalization.net/datasets/

InLoc [7] https://www.visuallocalization.net/datasets/

Table 1. Datasets used in the experimental evaluation and where to obtain them.

Kirchenge [2] (369) Grossmunster [2] (373) Kazan [4] (282) Doge Palace [4] (241)
€rot (deg) €pos (cm.) €rot (deg) €pos (cm.) €rot (deg) €pos (cm.) €rot (deg) €pos (cm.)
Proposed w/ 0.014 0.4 0.014 0.4 0.005 1.9 0.010 24
Sinele image P w/o 0.023 0.6 0.038 0.9 0.386 8.7 0.338 11.7
g g Camposeco et al. [1] w/ 0.024 0.8 0.031 3.7 0.007 2.7 0.016 91.1
P ) w/o 0.027 0.8 0.044 3.8 0.403 19.8 0.364 121.2
Proposed w/ 0.012 0.3 0.016 0.3 0.004 0.4 0.006 0.4
Multiple images P w/o 0.020 0.4 0.036 0.5 0.379 3.4 0.328 34
PSS mmoseco ef al 0oV 0.019 04 0.027 0.7 0.007 0.6 0.013 0.7
P ) w/o 0.027 0.8 0.044 3.8 0.403 19.8 0.364 121.2

Table 2. Average rotation error (in degree) and camera position error (in centimeters) with COLMAP reconstruction result as pseudo
groundtruth and optimized with / without groundtruth principal point. The number of images for each dataset is shown in the bracket.
Single image optimization and multiple images optimization are presented separately and both compared with method proposed in [1].
Error for principal point estimation for Kirchenge, Grossmunster, Kazan and Doge Palace in px are 0.830, 1.361, 16.456 and 15.377
respectively.

References

[1] Federico Camposeco, Torsten Sattler, and Marc Pollefeys.
Non-parametric structure-based calibration of radially sym-
metric cameras. In International Conference on Computer
Vision (ICCV),2015. 1,2, 6

[2] Viktor Larsson, Nicolas Zobernig, Kasim Taskin, and Marc
Pollefeys. Calibration-free structure-from-motion with cal-
ibrated radial trifocal tensors. In European Conference on
Computer Vision (ECCV), 2020. 2, 3, 4

[3] Yaroslava Lochman, Kostiantyn Liepieshov, Jianhui Chen,
Michal Perdoch, Christopher Zach, and James Pritts. Babel-
calib: A universal approach to calibrating central cameras. In
International Conference on Computer Vision (ICCV), 2021.
2,6

[4] Carl Olsson and Olof Enqvist. Stable structure from motion
for unordered image collections. In Scandinavian Conference
on Image Analysis (SCIA), 2011. 2,3, 4

[5] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars
Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi Oku-
tomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and Tomas
Pajdla. Benchmarking 6dof outdoor visual localization in
changing conditions, 2018. 2

[6] Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif
Kobbelt. Image retrieval for image-based localization revis-
ited. In British Machine Vision Conference (BMVC), 2012.
2

[7] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Aki-
hiko Torii. Inloc: Indoor visual localization with dense match-
ing and view synthesis, 2018. 2


github.com/ylochman/babelcalib
www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
github.com/vlarsson/radialsfm
https://www.visuallocalization.net/datasets/
https://www.visuallocalization.net/datasets/

Upgraded (w/o) Upgraded (w/) Bundle Adjustment (w/0) Bundle Adjustment (w/)

mean median mean median mean median mean median

€rot (deg.) 1.720  0.398 1.449  0.169 1.726 0.403 1.361 0.084

Kirchenge epoé (m.) 0.414  0.028 0.424  0.028 0.401 0.026 0.414 0.025
pm] (px) 2.199  1.630 1.999 1.728 1.469 1.015 1.088 0.857

f,if)] (px) 1.633  0.955 1.435 1.071 1.294 0.728 0.974 0.712

€rot (deg.) 2322 0.643 1.993  0.284 2.291 0.716 1.782 0.111

Grossmunster epoq (m.) 0.990 0.129 1.008 0.129 0.939 0.093 0.929 0.082
pm] (px) 2.866  2.110 3.223  2.563 1.631 1.325 1.227 0.935

;ﬁ’;] (px) 2.866  2.110 3.015 2356 1.516 1.075 1.191 0.869

€rot (deg.) 0.463  0.463 0.047  0.047 0.403 0.396 0.041 0.042

Kazan epos (m.) 0.053  0.048 0.021  0.018 0.152 0.112 0.015 0.014
pmj (px) 1.359 1.084 0.923 0.750 0.834 0.682 0.827 0.699

tho] (px) 0.957 0.720 0.708  0.487 0.658 0.488 0.569 0.401

€rot (deg.) 0.401 0.393 0.165 0.154 0.324 0.360 0.021 0.019

Doge Palace €pos (m.) 0.040 0.033 0.022 0.013 0.107 0.067 0.007 0.005
pm] (px) 0914 0.710 0.776  0.589 1.091 0.981 0.681 0.535

Zifn (px) 0.893  0.690 0.647 0.436 0.619 0.453 0.558 0.389

Table 3. BA with implicit distortion model with and without the GT principal point. Table shows the rotation (deg.) and position (m)
errors. We also report reprojection errors, both with the GT calib. and estimated. The estimation error for the principal point for Kirchenge,
Grossmunster, Kazan and Doge Palace are 8.504, 17.268, 21.522 and 17.487 respectively. Note that here the principal point estimate is
taken from the framework of Larsson et al. [2] which does not downweight residuals close to the image center.
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Figure 1. Cost across iterations of optimization for bundle adjustment with groundtruth principal point. Optimization stops when the
decrease in cost is less than 0.1%. Start of the outer iterations are marked with blue dots.
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Figure 2. Cost across iterations of optimization for bundle adjustment without groundtruth principal point. Optimization stops when the
decrease in cost is less than 0.1%. Start of the outer iterations are marked with blue dots.
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Figure 3. Bundle adjustment with implicit distortion optimized with / without ground truth principal point. Cumulative reprojection errors
using GT calib and estimated. Bundle adjustment using groundtruth principal point in general gives better reprojection error. The estimation
error for the principal point for Kirchenge, Grossmunster, Kazan and Doge Palace are 8.504, 17.268, 21.522 and 17.487 respectively. Note
that here the principal point estimate is taken from the framework of Larsson et al. [2] which does not downweight residuals close to the
image center.



Figure 4. Qualitative results of implicit self-calibration. The images were not seen during calibration showing that our calibration does not
overfit to the calibration data.



Training images Test images

Proposed Camposeco et al. [1] [2] Proposed Camposeco et al. [1]
Name Nimg  €rot  €pos <1°,1% €rot  €pos < 1°,1% B ep  erms < 1px €rms < 1px
Kalibr
BF2M2020S23 35+15 028 0.28 33/35 0.21 0.86 28/35 0.18 1.57 0.24 15/15 0.51 14/15
BF5M13720 35+15 0.12  0.09 35/35 0.25 192 31/35 0.18 045 0.20 15/15 0.66 14/15
BM2820 35+15 0.15 0.11 35/35 0.18 0.55 33/35 0.18 127 0.21 15/15 0.41 15/15
BM4018S118 35+15 0.08 0.14 35/35 0.33 093 24/35 024 0.08 0.27 15/15 0.62 15/15
ENTANIYA 35+15 0.19 0.13 35/35 040 040 30/35 042 099 0.52 15/15 1.00 12/15
EUROC 35+15 025 047 34/35 0.63 1.39 20/35 0.13 1.51 021 15/15 0.48 15/15
GOPRO 35+15 0.11 0.11 35/35 0.17  0.39 34/35 0.16 053 0.54 13/15 0.93 13/15
TUMVI 35415 020 0.12 35/35 0.29 048 31/35 0.16 0.68 0.19 15/15 0.30 15/15
OCamCalib
Fisheyel 1045 021 0.13 10/10 0.70 043 8/10 0.59 097 0.60 5/5 1.12 1/5
Fisheyel90deg 5+3 0.14 0.16 5/5 0.98 0.96 2/5 0.63 041 0.63 3/3 0.93 2/3
Fisheye2 1145 0.19 0.20 11/11 0.35 0.38 9/11 046 0.04 046 5/5 0.57 5/5
GOPR 7+4  0.14 0.15 717 0.16 0.20 717 123 134 251 0/4 6.82 0/4
KaidanOmni 1146 1.21  0.00 2/11 0.78  0.00 11/11 0.56 243 0.68 6/6 0.81 6/6
Ladybug 9+4 1.03  0.57 4/9 0.92 1.89 0/9 0.67 856 1.18 3/4 1.70 0/4
MiniOmni 1045 0.89 0.00 7/10 0.38 0.03 10/10 0.71 1.90 1.13 4/5 7.60 0/5
Oomni 9+5 0.76  0.67 8/9 046 1.05 3/9 078 1.16 1.03 2/5 2.93 0/5
VMRImage 7+3 0.67 0.64 1 0.61 0.70 57 0.56 276  0.60 3/3 0.67 3/3
ov
corner ov00 35+15 128 049 0/35 146 0.64 0/35 0.70 20.05 1.34 0/15 2.62 0/15
corner ov01l 35+15 0.61 0.25 35/35 0.71  0.31 35/35 071 932 096 5/15 1.56 0/15
corner ov02 35+15 1.08 0.80 9/35 123 0.58 1/35 2.11 16.16 2.59 1/15 348 0/15
corner ov03 35+15 0.60 0.33 35/35 0.65 0.33 34/35 5.67 9.07 582 4/15 6.45 0/15
corner ov04 35+15 1.08 0.78 10/35 1.23  1.01 0/35 071 1677 136  2/15 2.30 0/15
corner ov05 35+15 093 043 27/35 1.07 0.58 8/35 0.79 1460 1.19  3/15 1.90 0/15
corner ov06 35415 195 094 0/35 2.06 0.77 0/35 0.71 2796 2.00 0/15 3.16 0/15
corner ov07 35+15 1.05 0.61 6/35 1.16 047 3/35 0.74 1633 144 1/15 2.20 0/15
cube ov00 31+14 0.11 0.03 31/31 0.04 0.15 31/31 030 0.70 034 14/14 0.49 14/14
cube ov01 25+12 0.04 0.02 25/25 0.05 0.07 25/25 027 023 029 12/12 0.37 12/12
cube ov02 24+11 0.06 0.01 24/24 0.04 0.06 24/24 028 025 029 11/11 0.34 11/11
cube ov03 25+12 0.08 0.04 25/25 0.04 0.14 25/25 0.30 044 031 12/12 0.38 12/12
plane 130108MP 35+15 0.09 0.04 35/35 0.32  0.31 32/35 047 049 049 15/15 1.01 9/15
plane 2012-A0 30+13 0.65 3.16 0/30 143 2.69 0/30 056 092 0.61 13/13 3.94 0/13
plane 3136-HO 1949  4.17 25.90 0/19 1.50 2.73 0/19 095 200 1.72 2/9 3.18 0/9
plane 5501-C4 8+4 145 4.42 0/8 1.90 2.52 0/8 045 0.15 0.68 3/4 5.37 0/4
UZH
DAVIS in45 35+15 0.12 0.18 35/35 0.27 0.56 33/35 036 0.14 037 15/15 0.43 15/15
DAVIS inf 35+15 2.08 5.59 18/35 5.03 19.81 0/35 0.50 045 0.52 14/15 1.01 10/15
DAVIS 045 35415 0.19 046 33/35 0.82 229 27/35 0.30 0.09 0.30 15/15 0.50 15/15
DAVIS of 35+15 057 1.42 24/35 242 1048 2/35 049 079 049 14/15 0.94 9/15
Snapdragon in45 35+15 0.12  0.09 35/35 0.33  0.68 31/35 026 047 030 15/15 0.68 14/15
Snapdragon inf 35+15 023 0.32 33/35 0.69 1.79 26/35 024 082 024 15/15 0.42 15/15
Snapdragon 045 35+15 021 049 34/35 045 055 33/35 032 053 033 15/15 0.41 15/15
Snapdragon of 35+15 0.08 0.09 35/35 0.25 0.52 32/35 021 043 023 15/15 0.31 15/15

Table 4. Complete results for the checkerboard calibration experiment from Section 6.1 in the main paper. The table shows the per-camera
results. See the main paper for details on the experimental setup.
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