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Abstract

1. Overview of Supplementary Material
The supplementary material contains the following:

• Implementation details (Section 2)

• Detailed results from calibration experiment (Table 4)

• Detailed results for the BA experiment (Section 3)

• Evaluation with GT principal point (Section 4)

• Dataset details (Table 1)

• Additional qualitative results (Figure 4)

2. Implementation Details

Neighborhood selection. To construct the residuals in
the regularizer, we select the k = 2m closest neighbours
symmetrically around each point. To avoid the instabil-
ity from the denominator vanishing, a minimum distance
δrmin to the closest neighbor is enforced. Further, since the
locally linear assumption fails when the distance between
two neighbors is too large, δrmax is set to ensure the dis-
tance of that falls below a threshold.

Parameters. In our experiments, δrmin is set to be 1 px,
while δrmax is set to be 100 px. The number of neighbors
is chosen to be 4 since it provides a good trade-off between
redundancy in the fitting and the sparsity pattern. This is
evaluated in the ablation study in the main paper.

Outlier filtering. Given an initial pose estimate we pro-
pose to filter outliers in a similar fashion as in [1], using
a sliding median filter on the computed fi. Points where
fi deviate significantly from the median of the local neigh-
bourhood (n = 4) are removed. The threshold is set as
k = 3 × 1.4826 times the median error, which correspond
to the 99.7% confidence interval assuming the deviations
are normally distributed.

3. Evaluation of Bundle Adjustment
The proposed bundle adjustment method optimizes a sur-

rogate problem in each iteration to enable use of the Schur
complement trick. However, this inner optimization prob-
lem does not minimize the true cost. Figure 1 and Figure 2
show the cost across iterations for bundle adjustment with
and without groundtruth principal point. One can observe
spikes and energy steps due to the imperfection of the ap-
proximation, but still, the surrogate problem is a good ap-
proximation and the cost for outer iterations converges al-
most monotonically as shown in the plots.

4. Impact of Estimated Principal Point
For all the experiments in the paper we estimate the prin-

cipal point by first assuming it is in the center of the image.
The principal point is then refined by minimizing the radial
reprojection error (see Section 4 in the main paper). For
comparison we here show the results using the ground truth
principal point (as used in the reference SfM model). See
Table 2 and Table 3. Experiments for optimization with es-
timated principal point are also listed for reference. Simi-
larly, the proposed method consistently outperforms the the
Camposeco et al. [1] when ground truth principal point is
used. The improvement for estimation of pose for dataset
Kazan and Doge Palace using ground truth principal point
is significant, which is due to the poor estimation of princi-
pal point. In Figure 1 we show the cost across iterations for
bundle adjustment using ground truth principal point, and
that with estimated principal point can be found in Figure 2.
Cumulative reprojection error plots for bundle adjustment
with / without groundtruth principal points can be found in
Figure 3. Generally, optimizations with groundtruth princi-
pal point give better error, and the difference is more sig-
nificant when the estimation of principal point is less accu-
rate. Empirically we found that the principal point refine-
ment works slightly better if points close to the center are
downweighted in the optimization (as the radial reprojec-
tion error is very sensitive to principal point shifts for these
correspondences).



Checkerboard calib. images [3] github.com/ylochman/babelcalib
Doge Palace and Kazan [4] www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
Grossmunster and Kirchenge [2] github.com/vlarsson/radialsfm
Aachen Day-Night [5, 6] https://www.visuallocalization.net/datasets/
InLoc [7] https://www.visuallocalization.net/datasets/

Table 1. Datasets used in the experimental evaluation and where to obtain them.

Kirchenge [2] (369) Grossmunster [2] (373) Kazan [4] (282) Doge Palace [4] (241)

εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.) εrot (deg.) εpos (cm.)

Single image
Proposed w/ 0.014 0.4 0.014 0.4 0.005 1.9 0.010 2.4

w/o 0.023 0.6 0.038 0.9 0.386 8.7 0.338 11.7

Camposeco et al. [1] w/ 0.024 0.8 0.031 3.7 0.007 2.7 0.016 91.1
w/o 0.027 0.8 0.044 3.8 0.403 19.8 0.364 121.2

Multiple images
Proposed w/ 0.012 0.3 0.016 0.3 0.004 0.4 0.006 0.4

w/o 0.020 0.4 0.036 0.5 0.379 3.4 0.328 3.4

Camposeco et al. [1] w/ 0.019 0.4 0.027 0.7 0.007 0.6 0.013 0.7
w/o 0.027 0.8 0.044 3.8 0.403 19.8 0.364 121.2

Table 2. Average rotation error (in degree) and camera position error (in centimeters) with COLMAP reconstruction result as pseudo
groundtruth and optimized with / without groundtruth principal point. The number of images for each dataset is shown in the bracket.
Single image optimization and multiple images optimization are presented separately and both compared with method proposed in [1].
Error for principal point estimation for Kirchenge, Grossmunster, Kazan and Doge Palace in px are 0.830, 1.361, 16.456 and 15.377
respectively.
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Upgraded (w/o) Upgraded (w/) Bundle Adjustment (w/o) Bundle Adjustment (w/)

mean median mean median mean median mean median

Kirchenge
εrot (deg.) 1.720 0.398 1.449 0.169 1.726 0.403 1.361 0.084
εpos (m.) 0.414 0.028 0.424 0.028 0.401 0.026 0.414 0.025
εGT
proj (px) 2.199 1.630 1.999 1.728 1.469 1.015 1.088 0.857
εestproj (px) 1.633 0.955 1.435 1.071 1.294 0.728 0.974 0.712

Grossmunster
εrot (deg.) 2.322 0.643 1.993 0.284 2.291 0.716 1.782 0.111
εpos (m.) 0.990 0.129 1.008 0.129 0.939 0.093 0.929 0.082
εGT
proj (px) 2.866 2.110 3.223 2.563 1.631 1.325 1.227 0.935
εestproj (px) 2.866 2.110 3.015 2.356 1.516 1.075 1.191 0.869

Kazan
εrot (deg.) 0.463 0.463 0.047 0.047 0.403 0.396 0.041 0.042
εpos (m.) 0.053 0.048 0.021 0.018 0.152 0.112 0.015 0.014
εGT
proj (px) 1.359 1.084 0.923 0.750 0.834 0.682 0.827 0.699
εestproj (px) 0.957 0.720 0.708 0.487 0.658 0.488 0.569 0.401

Doge Palace
εrot (deg.) 0.401 0.393 0.165 0.154 0.324 0.360 0.021 0.019
εpos (m.) 0.040 0.033 0.022 0.013 0.107 0.067 0.007 0.005
εGT
proj (px) 0.914 0.710 0.776 0.589 1.091 0.981 0.681 0.535
εestproj (px) 0.893 0.690 0.647 0.436 0.619 0.453 0.558 0.389

Table 3. BA with implicit distortion model with and without the GT principal point. Table shows the rotation (deg.) and position (m)
errors. We also report reprojection errors, both with the GT calib. and estimated. The estimation error for the principal point for Kirchenge,
Grossmunster, Kazan and Doge Palace are 8.504, 17.268, 21.522 and 17.487 respectively. Note that here the principal point estimate is
taken from the framework of Larsson et al. [2] which does not downweight residuals close to the image center.
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Figure 1. Cost across iterations of optimization for bundle adjustment with groundtruth principal point. Optimization stops when the
decrease in cost is less than 0.1%. Start of the outer iterations are marked with blue dots.
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Figure 2. Cost across iterations of optimization for bundle adjustment without groundtruth principal point. Optimization stops when the
decrease in cost is less than 0.1%. Start of the outer iterations are marked with blue dots.
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Figure 3. Bundle adjustment with implicit distortion optimized with / without ground truth principal point. Cumulative reprojection errors
using GT calib and estimated. Bundle adjustment using groundtruth principal point in general gives better reprojection error. The estimation
error for the principal point for Kirchenge, Grossmunster, Kazan and Doge Palace are 8.504, 17.268, 21.522 and 17.487 respectively. Note
that here the principal point estimate is taken from the framework of Larsson et al. [2] which does not downweight residuals close to the
image center.



Figure 4. Qualitative results of implicit self-calibration. The images were not seen during calibration showing that our calibration does not
overfit to the calibration data.



Training images Test images
Proposed Camposeco et al. [1] [3] Proposed Camposeco et al. [1]

Name Nimg εrot εpos < 1◦, 1% εrot εpos < 1◦, 1% εBC
rms εpp εrms < 1px εrms < 1px

Kalibr
BF2M2020S23 35+15 0.28 0.28 33/35 0.21 0.86 28/35 0.18 1.57 0.24 15/15 0.51 14/15
BF5M13720 35+15 0.12 0.09 35/35 0.25 1.92 31/35 0.18 0.45 0.20 15/15 0.66 14/15
BM2820 35+15 0.15 0.11 35/35 0.18 0.55 33/35 0.18 1.27 0.21 15/15 0.41 15/15
BM4018S118 35+15 0.08 0.14 35/35 0.33 0.93 24/35 0.24 0.08 0.27 15/15 0.62 15/15
ENTANIYA 35+15 0.19 0.13 35/35 0.40 0.40 30/35 0.42 0.99 0.52 15/15 1.00 12/15
EUROC 35+15 0.25 0.47 34/35 0.63 1.39 20/35 0.13 1.51 0.21 15/15 0.48 15/15
GOPRO 35+15 0.11 0.11 35/35 0.17 0.39 34/35 0.16 0.53 0.54 13/15 0.93 13/15
TUMVI 35+15 0.20 0.12 35/35 0.29 0.48 31/35 0.16 0.68 0.19 15/15 0.30 15/15

OCamCalib
Fisheye1 10+5 0.21 0.13 10/10 0.70 0.43 8/10 0.59 0.97 0.60 5/5 1.12 1/5
Fisheye190deg 5+3 0.14 0.16 5/5 0.98 0.96 2/5 0.63 0.41 0.63 3/3 0.93 2/3
Fisheye2 11+5 0.19 0.20 11/11 0.35 0.38 9/11 0.46 0.04 0.46 5/5 0.57 5/5
GOPR 7+4 0.14 0.15 7/7 0.16 0.20 7/7 1.23 1.34 2.51 0/4 6.82 0/4
KaidanOmni 11+6 1.21 0.00 2/11 0.78 0.00 11/11 0.56 2.43 0.68 6/6 0.81 6/6
Ladybug 9+4 1.03 0.57 4/9 0.92 1.89 0/9 0.67 8.56 1.18 3/4 1.70 0/4
MiniOmni 10+5 0.89 0.00 7/10 0.38 0.03 10/10 0.71 1.90 1.13 4/5 7.60 0/5
Omni 9+5 0.76 0.67 8/9 0.46 1.05 3/9 0.78 1.16 1.03 2/5 2.93 0/5
VMRImage 7+3 0.67 0.64 7/7 0.61 0.70 5/7 0.56 2.76 0.60 3/3 0.67 3/3

OV
corner ov00 35+15 1.28 0.49 0/35 1.46 0.64 0/35 0.70 20.05 1.34 0/15 2.62 0/15
corner ov01 35+15 0.61 0.25 35/35 0.71 0.31 35/35 0.71 9.32 0.96 5/15 1.56 0/15
corner ov02 35+15 1.08 0.80 9/35 1.23 0.58 1/35 2.11 16.16 2.59 1/15 3.48 0/15
corner ov03 35+15 0.60 0.33 35/35 0.65 0.33 34/35 5.67 9.07 5.82 4/15 6.45 0/15
corner ov04 35+15 1.08 0.78 10/35 1.23 1.01 0/35 0.71 16.77 1.36 2/15 2.30 0/15
corner ov05 35+15 0.93 0.43 27/35 1.07 0.58 8/35 0.79 14.60 1.19 3/15 1.90 0/15
corner ov06 35+15 1.95 0.94 0/35 2.06 0.77 0/35 0.71 27.96 2.00 0/15 3.16 0/15
corner ov07 35+15 1.05 0.61 6/35 1.16 0.47 3/35 0.74 16.33 1.44 1/15 2.20 0/15
cube ov00 31+14 0.11 0.03 31/31 0.04 0.15 31/31 0.30 0.70 0.34 14/14 0.49 14/14
cube ov01 25+12 0.04 0.02 25/25 0.05 0.07 25/25 0.27 0.23 0.29 12/12 0.37 12/12
cube ov02 24+11 0.06 0.01 24/24 0.04 0.06 24/24 0.28 0.25 0.29 11/11 0.34 11/11
cube ov03 25+12 0.08 0.04 25/25 0.04 0.14 25/25 0.30 0.44 0.31 12/12 0.38 12/12
plane 130108MP 35+15 0.09 0.04 35/35 0.32 0.31 32/35 0.47 0.49 0.49 15/15 1.01 9/15
plane 2012-A0 30+13 0.65 3.16 0/30 1.43 2.69 0/30 0.56 0.92 0.61 13/13 3.94 0/13
plane 3136-H0 19+9 4.17 25.90 0/19 1.50 2.73 0/19 0.95 2.00 1.72 2/9 3.18 0/9
plane 5501-C4 8+4 1.45 4.42 0/8 1.90 2.52 0/8 0.45 0.15 0.68 3/4 5.37 0/4

UZH
DAVIS in45 35+15 0.12 0.18 35/35 0.27 0.56 33/35 0.36 0.14 0.37 15/15 0.43 15/15
DAVIS inf 35+15 2.08 5.59 18/35 5.03 19.81 0/35 0.50 0.45 0.52 14/15 1.01 10/15
DAVIS o45 35+15 0.19 0.46 33/35 0.82 2.29 27/35 0.30 0.09 0.30 15/15 0.50 15/15
DAVIS of 35+15 0.57 1.42 24/35 2.42 10.48 2/35 0.49 0.79 0.49 14/15 0.94 9/15
Snapdragon in45 35+15 0.12 0.09 35/35 0.33 0.68 31/35 0.26 0.47 0.30 15/15 0.68 14/15
Snapdragon inf 35+15 0.23 0.32 33/35 0.69 1.79 26/35 0.24 0.82 0.24 15/15 0.42 15/15
Snapdragon o45 35+15 0.21 0.49 34/35 0.45 0.55 33/35 0.32 0.53 0.33 15/15 0.41 15/15
Snapdragon of 35+15 0.08 0.09 35/35 0.25 0.52 32/35 0.21 0.43 0.23 15/15 0.31 15/15

Table 4. Complete results for the checkerboard calibration experiment from Section 6.1 in the main paper. The table shows the per-camera
results. See the main paper for details on the experimental setup.
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