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Abstract

This appendix will introduce more details that cannot be
expanded in the main text, while showing the performance
on SOD. The main contents are summarized as follows:

1. Model Details, Sec. 1
(a) E-Net, Sec. 1.1
(b) C-Net, Sec. 1.2
(c) Decoder Framework, Sec. 1.3
(d) Baseline Model, Sec. 1.4
(e) Model ⑤, Sec. 1.5

2. HMU: Perspective of Kernel Pyramid, Sec. 2
3. More Comparisons, Sec. 3

(a) PR & Fβ curves of COD Methods, Sec. 3.1
(b) Comparisons of Param. & FLOPs, Sec. 3.2
(c) Intermidiate Feature Maps of the Decoder,

Sec. 3.3
(d) Effectiveness of UAL, Sec. 3.4
(e) Different Forms of λ, Sec. 3.5
(f) Different Forms of UAL, Sec. 3.6
(g) Performance in More Complex Scenes, Sec. 3.7

4. Experiments on SOD, Sec. 4
(a) Datasets, Sec. 4.1
(b) Implementation Details, Sec. 4.2
(c) Comparisons with State-of-the-arts, Sec. 4.3

5. Limitations and Future Work, Sec. 5

1. Model Details
1.1. E-Net

E-Net is based on the feature extraction part of ResNet-
50 [5] and the layers after the “layer4” are removed. We col-
lect the feature maps before passing the first max-pooling
layer and the output feature maps of “layer1”, “layer2”,

†These authors contributed equally to this work.
*Corresponding author.

“layer3” and “layer4” as the output feature maps of the E-
Net. The numbers of channels corresponding to them are
64, 256, 512, 1024, and 2048, respectively.

1.2. C-Net

Following the setting of the method [37], in C-Net, we
use an ASPP [1] simplified according to our needs as the
feature compression layer corresponding to the “layer4” of
E-Net and other layers are simply composed of an indepen-
dent “Conv3×3-BN-ReLU” (3×3 CBR) unit. The numbers
of output channels of all levels are set to 64 in our models.

The ASPP layer is composed of five CBR branches. The
kernel sizes and dilation rates of them are 1, 3, 3, 3, 1 and
1, 2, 5, 7, 1. All convolution operations use the padding to
ensure that the input and output sizes are consistent. A
global average pooling operation and an up-sampling opera-
tion are used before and after the second 1× 1 CBR branch
to capture the global context information and restore it to
the original size. All results of the five branches are con-
catenated along the channel dimension and fused by a 3× 3
CBR unit to obtain the output.

1.3. Decoder Framework

The decoder networks of our models in all experiments
follow the same framework as shown in Fig. 2. Before being
fed into the fusion unit (FU), the up-sampled deeper feature
map is directly added to the shallow feature map.

In our all experiments, Nf and Nl are set to 1. The num-
bers of input & output channels of the last 3 × 3 CBR unit
are 64 and 32, respectively. The number of output channels
of the “Conv1 × 1” is 1 and a sigmoid layer is cascaded to
convert the logits map to the prediction. In the decoder of
the proposed ZoomNet, the FU is set to the HMU and the
other layers remain the same.
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Figure 1. Visual comparison of intermediate feature maps from different stages of the decoder for showing the effects of the proposed
UAL. Please zoom in for more details. HMU: Hierarchical mixed-scale unit; LastCBR: The last “Conv3× 3-BN-ReLU” structure before
the layer generating the logits map.

1 class StackedCBRBlock(nn.Sequential):
2 def __init__(self, in_c, out_c, num_blocks=1, kernel_size=3):
3 super().__init__()
4 self.kernel_setting = dict(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
5 cs = [in_c] + [out_c] * num_blocks
6 self.channel_pairs = tuple(self.slide_win_select(cs, win_size=2, win_stride=1, drop_last=True))
7 for i, (i_c, o_c) in enumerate(self.channel_pairs):
8 self.add_module(name=f"cbr_{i}", module=CBR(i_c, o_c, **self.kernel_setting))
9 @staticmethod

10 def slide_win_select(items, win_size=1, win_stride=1, drop_last=False):
11 i = 0
12 while i + win_size <= len(items):
13 yield items[i: i + win_size]
14 i += win_stride
15 if not drop_last:
16 yield items[i: i + win_size]

Listing 1. Code of stacked CBR units.

1.4. Baseline Model

In the ablation study, we introduce a simple encoder-
decoder network as our baseline model to evaluate the per-
formance of different proposed components. It contains
a feature extraction network “E-Net”, a simple multi-level
feature compression convolutional network “C-Net”, and a
basic convolutional decoder where the FU is set to the 3×3
CBR unit. In the following text, “CBR1-5” are used to refer
to these five units.

1.5. Model ⑤

In Tab. 2 of the main text, based on the baseline model
①, we construct the model ⑤ with the similar amount of pa-
rameters and FLOPs to ④ to reflect the effectiveness of the
method and the rationality of the design. For increasing the
number of parameters and FLOPs, we made the following
modifications to the baseline model ①:

• The number of output channels of all levels of C-Net:
64→ 128.
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Figure 2. Illustration of the basic framework adopted by the de-
coder in our proposed method. FU: The fusion unit for fusing the
up-sampled feature map from the previous FU and the shallower
feature map fi (i = 1, 2, ..., 5). 2×: The bi-linear interpolation
operation with a factor of 2. CBR: The “Conv3 × 3-BN-ReLU”
unit. Conv1 × 1: The convolution operation with a kernel size of
1× 1. Nf and Nl: The numbers of FUs and the last CBR units.

• The number of input/output channels of CBR1-5 units
of the basic convolutional decoder: 64→ 128.

• The number of input channels of the last CBR unit:
64→ 128.

• The number of CBR units (Nf and Nl) of all levels of
the basic convolutional decoder: 1→ 3.

• The kernel size of the convolution operation in all lev-
els of the basic convolutional decoder: 3→ 5.

To facilitate understanding, the corresponding code for
the stacked CBR units used here is listed in List. 1.

Algorithm 1 The iteration struction in the HMU

Input: {gj}Gj=1: feature groups; G ≥ 2: the number of
groups; C = 32: the number of channels in a single fea-
ture group gj ; S: splitting operation; TCo×Ci : stacked
CBR units with initial input and final output channel
numbers of Ci and Co as listed in List. 1; C: concate-
nation operation;

Output: {g′2j}Gj=1: the feature set for generating the mod-
ulation vector α; {g′3j}Gj=1: the feature set used to be
modulated and generate the final output of the HMU;

1: for i← 1, G do
2: if i = 1 then ▷ Group 1
3: g′

1
i , g

′2
i , g

′3
i ← S(T i

3C×C(gi));
4: g′

1
prev ← g′

1
i ;

5: else if i = G then ▷ Group G
6: g′

2
i , g

′3
i ← S(T i

2C×2C(C(gi, g′
1
prev)));

7: else ▷ Group i, 1 < i < G
8: g′

1
i , g

′2
i , g

′3
i ← S(T i

3C×2C(C(gi, g′
1
prev)));

9: g′
1
prev ← g′

1
i ;

10: end if
11: end for

Table 1. Comparisons of the number of parameters and
FLOPs based on https://github.com/lartpang/
MethodsCmp corresponding to recent COD methods. All evalu-
ations follow the inference settings in the corresponding papers.

Method Ours UGTR [30] C2F-Net [19] UJSC [6] PFNet [14] MGL-R [33] SLSR [13] SINet [4]

Params. 32.382M 48.868M 28.411M 217.982M 46.498M 63.595M 50.935M 48.947M
FLOPs 203.496G 1.007T 26.167G 112.341G 53.222G 553.939G 66.625G 38.757

FPS 24.030 16.640 65.759 34.178 62.590 13.373 58.782 56.509

Pixel Value

20 35 50 65 80 95 110125140155170185200215230245

Im
ag

e I
d

1
6

11
16

21
26

31
36

41
46

51
56

61
66

71
76

C
ou

nt

w/o UAL

Pixel Value

20 35 50 65 80 95 110125140155170185200215230245

Im
ag

e I
d

1
6

11
16

21
26

31
36

41
46

51
56

61
66

71
76

C
ou

nt

w UAL

Figure 3. Visual comparison of histograms of all 76 prediction
results on the CHAMELEON [18] dataset, which is a stack of
the histogram of each prediction. A good result should embody a
closely binarized histogram at both ends. For a more clear demon-
stration, only the interval with pixel values between 20 and 245 is
counted here. It is best to zoom in for more details.

Table 2. Comparisons of different increasing strategies of λ.
λconst: A constant value and it is set to 1. t and T : The cur-
rent and total number of iterations, respectively. λmin and λmax:
The minimum and maximum values of λ, and they are set to 0 and
1 in our experiments. “Lineartmin→tmax”: The linearly increas-
ing interval in the iterations is [tmin, tmax]. clip: Values outside
the interval are clipped to the interval edges.

Strategy λ Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

Cosine λmin + 1
2 (1− cos( t

T π))(λmax − λmin) 0.838 0.729 0.029 0.766 0.911

Linear0→T 0.834 0.723 0.029 0.760 0.908
Linear0.3T→0.7T

clip(λmin + t−tmin

tmax−tmin
(λmax − λmin), λmin, λmax) 0.832 0.719 0.030 0.758 0.904

Constant λconst 0.830 0.717 0.030 0.757 0.906

2. HMU: Perspective of Kernel Pyramid

The iteration structure of feature groups in HMU is ac-
tually equivalent to an integrated multi-path kernel pyramid
structure with partial parameter sharing. In order to under-
stand this intuitively, we highlight the feature information
flow of different groups in the iterative structure in Fig. 5.
Specifically, the 3 × 3 CBR unit corresponding to the fea-
ture group in the iteration structure can be split according
to the output feature groups. As shown in the “Integrated
Kernel Pyramid” on the left of Fig. 5, each original CBR
unit with an output channel number of 3C is converted to
three independent CBR units with a shared input. And the
numbers of output channels of them are C. When we fur-
ther decouple the integrated form on the left into the form
on the right, we can clearly see that the information flow
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Figure 4. Curves of different forms of the proposed UAL.
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Figure 5. The iteration structure of feature groups in HMU can be regarded as an integrated kernel pyramid. Without loss of generality,
we show the situation of the number of groups G = 3 in the figure. The actual final model is set to G = 6. The only difference lies in the
number of repetitions of the kernel pyramid structure in the middle. “CBRl-j”: The “Conv3 × 3-BN-ReLU” structure corresponding to
the input feature group gl and the jth output feature group. Co ×Ci: The numbers of input and output channels of the CBR unit is Ci and
Co, respectively.

paths corresponding to different feature groups each form
a multi-branch kernel pyramid structure and there are some
shared parameters between these pyramids.

As mentioned in the main text of the paper, some of the
channels in the output feature of each branch are used to-
gether to generate the modulation vector. It not only weights
the channels inside each branch, but also weights different
branches. If viewed from the aforementioned perspective of
the kernel pyramid, such an operation can be seen as a rel-
ative modulation of the different kernel pyramids contained
in the iterative structure of the HMU.

Besides, in our HMU, C is set to 32. The number of
channels of the final output feature of the HMU is the same

as the input feature, both are 64. We also list the algorithm
of the iteration structure in Alg. 1 to present the process
more clearly and to complement the related statement in the
main text.

3. More Comparisons

3.1. PR & Fβ curves of COD Methods

In Fig. 6, we show the PR & Fβ curves of different meth-
ods on four COD datasets. The red curve represents our
method.
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(a) PR curves.
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Figure 6. PR and Fβ curves of the proposed model and recent SOTA algorithms over four COD datasets.

3.2. Comparisons of Param. & FLOPs

In Tab. 1, we list the number of parameters and FLOPs
of existing COD methods and ours. Our method provides
a performance-robust solution with the second-smallest
amount of parameters for the COD task. But there may be
still some redundancy in the design of the inference struc-
ture. The adopted explicit scale-independent design may
bring additional inference cost. We will explore and im-
prove this in future work.

3.3. Intermediate Feature Maps of the Decoder

We show the intermediate feature maps from different
stages of the decoder in Fig. 1.

3.4. Effectiveness of UAL

In Fig. 3, we visualize the histogram maps of all results
on CHAMELEON [18].

3.5. Different Forms of λ

The different adjustment functions of the coefficient λ
and their results of UAL are list in Tab. 2.

3.6. Different Forms of UAL

The different forms of UAL are shown in Fig. 4.

3.7. Performance in More Complex Scenes

Actually, COD10K-TE is a very representative test
dataset with rich and diverse scenarios and objects. Be-
sides, there is also a very complex small-scale dataset

Table 3. Comparison results of methods trained without CPD1K-
TR on CPD1K-TE [39].

Model Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

ZoomNet 0.759 0.537 0.011 0.578 0.843
C2FNet 0.743 0.495 0.016 0.528 0.840
PFNet 0.722 0.460 0.017 0.494 0.819

CPD1K [39]. Tab. 3 shows the results of our method and
some state-of-the-art competitors (all are trained without
CPD1K-TR). The test results on CPD1K-TE can reflect the
adaptability of the model to complex scenarios. The ex-
periment shows the superior performance of our method in
more complex scenarios.

4. Experiments on SOD

In order to show good generalization and further verify
the rationality of the structural design, we evaluate the pro-
posed model on the SOD task.

4.1. Datasets

Our experiment on SOD is based on the existing five
SOD datasets, DUT-OMRON [29] (5168), DUTS [20]
(10553 + 5017), ECSSD [28] (1000), HKU-IS [7] (4447)
and Pascal-S [7] (850). We only use the training set of
DUTS for training. During the test phase, we use the re-
maining data for inference.



Table 4. More detailed comparison results on the SOD task. The best results are highlighted in red, green and blue. These results are
based on the VGG [17], ResNet [5] and T2T-ViT [31] version of the corresponding method.

DUT-OMRON DUTS-TE ECSSD HKU-IS PASCAL-SModel Backbone Year Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ Fω

β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ Fω

β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

RAS [2] VGG16 2018 0.814 0.695 0.062 0.731 0.860 0.839 0.740 0.059 0.779 0.889 0.893 0.857 0.056 0.887 0.931 0.887 0.843 0.045 0.875 0.940 0.793 0.735 0.106 0.790 0.846
MLMSNet [24] VGG16 2019 0.809 0.681 0.064 0.710 0.848 0.862 0.761 0.049 0.792 0.907 0.911 0.871 0.045 0.890 0.944 0.907 0.859 0.039 0.878 0.950 0.845 0.785 0.075 0.814 0.893
PAGENet [21] VGG16 2019 0.824 0.722 0.062 0.743 0.858 0.854 0.769 0.052 0.793 0.896 0.912 0.886 0.042 0.904 0.947 0.903 0.865 0.037 0.884 0.948 0.838 0.789 0.079 0.819 0.885
PiCANet [10] ResNet50 2018 0.832 0.695 0.065 0.729 0.876 0.869 0.755 0.051 0.791 0.920 0.917 0.867 0.046 0.890 0.952 0.904 0.840 0.043 0.866 0.950 0.852 0.779 0.078 0.812 0.899
BASNet [16] ResNet34 2019 0.836 0.751 0.056 0.767 0.871 0.866 0.803 0.048 0.823 0.903 0.916 0.904 0.037 0.917 0.951 0.909 0.889 0.032 0.902 0.951 0.834 0.797 0.079 0.824 0.883
CPD [25] ResNet50 2019 0.825 0.719 0.056 0.742 0.868 0.869 0.795 0.043 0.821 0.914 0.918 0.898 0.037 0.913 0.951 0.905 0.875 0.034 0.892 0.950 0.844 0.800 0.074 0.827 0.888
PoolNet [9] ResNet50 2019 0.831 0.725 0.054 0.747 0.867 0.887 0.817 0.037 0.840 0.926 0.926 0.904 0.035 0.918 0.956 0.919 0.888 0.030 0.903 0.958 0.864 0.819 0.067 0.846 0.905
EGNet [35] ResNet50 2019 0.841 0.738 0.053 0.760 0.878 0.887 0.816 0.039 0.839 0.927 0.925 0.903 0.037 0.918 0.955 0.918 0.887 0.031 0.902 0.958 0.850 0.804 0.076 0.833 0.892
HRS [32] ResNet50 2019 0.772 0.645 0.066 0.690 0.841 0.829 0.746 0.051 0.791 0.899 0.883 0.859 0.054 0.894 0.934 0.882 0.851 0.042 0.883 0.941 0.799 0.744 0.091 0.792 0.866
SCRN [26] ResNet50 2019 0.837 0.720 0.056 0.749 0.875 0.885 0.803 0.040 0.833 0.925 0.927 0.900 0.037 0.916 0.956 0.916 0.876 0.034 0.894 0.956 0.865 0.813 0.066 0.840 0.906
F3Net [22] ResNet50 2020 0.838 0.747 0.053 0.766 0.872 0.888 0.835 0.035 0.852 0.927 0.924 0.912 0.033 0.925 0.955 0.917 0.900 0.028 0.910 0.958 0.857 0.823 0.064 0.843 0.901
GCPANet [3] ResNet50 2020 0.839 0.734 0.056 0.756 0.869 0.891 0.821 0.038 0.841 0.929 0.927 0.903 0.035 0.916 0.955 0.920 0.889 0.031 0.901 0.958 0.864 0.819 0.063 0.840 0.906
LDF [23] ResNet50 2020 0.839 0.752 0.052 0.770 0.869 0.892 0.845 0.034 0.861 0.930 0.924 0.915 0.034 0.927 0.954 0.919 0.904 0.028 0.913 0.958 0.859 0.829 0.062 0.851 0.905
DFI [8] ResNet50 2020 0.840 0.738 0.055 0.762 0.877 0.887 0.817 0.039 0.840 0.928 0.927 0.906 0.035 0.920 0.957 0.919 0.890 0.031 0.903 0.961 0.864 0.824 0.066 0.849 0.907
GateNet [37] ResNet50 2020 0.838 0.729 0.055 0.757 0.876 0.885 0.809 0.040 0.837 0.928 0.920 0.894 0.040 0.913 0.952 0.915 0.880 0.033 0.897 0.955 0.854 0.804 0.071 0.835 0.900
ITSD [40] ResNet50 2020 0.840 0.750 0.061 0.768 0.880 0.885 0.824 0.041 0.840 0.929 0.925 0.910 0.034 0.921 0.959 0.917 0.894 0.031 0.904 0.960 0.859 0.823 0.066 0.843 0.910
MINet [15] ResNet50 2020 0.833 0.738 0.056 0.757 0.869 0.884 0.825 0.037 0.844 0.927 0.925 0.911 0.033 0.923 0.957 0.919 0.897 0.029 0.909 0.960 0.854 0.818 0.066 0.841 0.901
VST [11] T2T-ViTt-14 2021 0.850 0.755 0.058 0.774 0.888 0.896 0.828 0.037 0.845 0.939 0.932 0.910 0.033 0.920 0.964 0.928 0.897 0.029 0.907 0.968 0.871 0.827 0.062 0.847 0.918
SAMNet [12] Handcraft 2021 0.830 0.699 0.065 0.734 0.877 0.849 0.729 0.058 0.768 0.901 0.907 0.858 0.050 0.883 0.945 0.898 0.837 0.045 0.864 0.946 0.822 0.743 0.095 0.784 0.869
SGL-KRN [27] ResNet50 2021 0.846 0.765 0.049 0.783 0.885 0.893 0.847 0.034 0.865 0.939 0.923 0.910 0.036 0.924 0.954 0.921 0.904 0.028 0.915 0.961 0.854 0.823 0.070 0.849 0.900
CTDNet [38] ResNet50 2021 0.844 0.762 0.052 0.779 0.881 0.893 0.847 0.034 0.862 0.935 0.925 0.915 0.032 0.927 0.956 0.921 0.909 0.027 0.918 0.961 0.859 0.829 0.064 0.851 0.904
Auto-MSFNet [34] ResNet50 2021 0.832 0.757 0.050 0.772 0.875 0.877 0.841 0.034 0.855 0.931 0.914 0.916 0.033 0.927 0.954 0.908 0.903 0.027 0.912 0.959 0.849 0.830 0.063 0.852 0.902
Ours ResNet50 2021 0.841 0.755 0.053 0.771 0.872 0.900 0.854 0.033 0.866 0.936 0.935 0.926 0.027 0.933 0.963 0.931 0.918 0.023 0.923 0.967 0.869 0.844 0.057 0.860 0.917

4.2. Implementation Details

For a fair comparison on SOD, the proposed model is re-
trained on DUTS [20] following the training strategies and
techniques of [15,22,23,26,36]. The learning rate is initial-
ized to 0.05 and follows a linear warm-up and linear decay
strategy. And the main scale is changed to 352 × 352 to
achieve a trade-off between performance and speed. The
model tends to converge after 50 epochs with a batch size
of 22.

4.3. Comparisons with State-of-the-arts

We compare the proposed model with 22 existing meth-
ods. All the results are listed in Tab. 4 and shown in Fig. 7.
Our model outperforms all these competitors, which shows
that the proposed model can deal with the more general bi-
nary segmentation task.

5. Limitations and Future Work
Although our ZoomNet provides a powerful and effec-

tive solution for the COD task, some limitations still exist
and are worth exploring further.

1. In the current work, the shared feature extraction
structure explicitly collects complementary informa-
tion from different scales on the image pyramid, which
is designed to mimic the behavior of zooming in and
out. But for human beings, the process of information
extraction and integration should be implicit and inter-
nalized in the process of knowledge learning. More-
over, this explicit scale-independent design also brings
the additional inference cost. Although our method has
achieved good performance on COD and SOD tasks,
the inference speed is still slightly slower than the cur-
rent fastest method, C2FNet [19].

2. Besides, there is still room for improvement in the way
of mining effective clues from small-scale features in

SIU.

In future work, we will try to further simplify the infer-
ence structure to make it more in line with the actual hu-
man decision-making process and optimize the ability of
our method to extract contextual cues from small-scale fea-
tures.
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