
Supplementary Material
In this document, we include the full object detection

evaluation table reporting accuracy and speedup in all con-
figurations (see Figure 2). Furthermore, we explain in more
detail how the convolutions are implemented to achieve high
efficiency (Section 1) and perform ablation studies on thresh-
old tuning (Section 2).

1. Efficient convolution on GPUs
Designing an efficient convolutional layer that is on par

with today’s leading framework, cuDNN, requires extensive
profiling, analysis and optimizations. Minimization of mem-
ory transfers and logic operations, as well as optimizing
local memory usage (registers and shared memory) are key
in achieving a high performance for compute-heavy opera-
tions like convolutions. In this section, we discuss our design
decisions and perform ablation studies.

1.1. Tiling for memory reuse

Like cuDNN, we perform convolutions in rectangular
tiles. Each tile consists of a few output pixels (4-48, de-
pending on local memory requirements) and is processed
by a single cooperative thread array (CTA). Neighboring
output pixels share most of their input pixels - in the case
of a 3x3 filter, 2 neighboring output pixels share 6 out of
each one’s 9 input pixels. Larger tiles lead to better memory
reuse and can thereby lower the number of global memory
transfers significantly. For example, we use a tile size of 6x6
output pixels for a 3x3 convolutional kernel with a stride
of 1. Compared to processing each pixel individually, this
reduces the memory reads to less than a fourth, effectively
reading less than 2 inputs per output instead of 9. Even more
important is the reuse of filter parameters which are often
larger than input feature maps. Yet, smaller tile sizes require
less registers and allow for more parallelization. And more
importantly, smaller tiles are more likely to be skipped as
less inputs can require updates. As always, the key is to find
the right balance (see Table 1).

1.2. Hybrid dense/sparse tile inference

The convolutional kernel starts with calculating indices,
loading the update mask of the input, writing the output mask
and, in case any of the inputs was updated, performing the
actual convolution. The convolution is performed in three
steps: a) load updated input pixels and store them in CTA
shared memory and store zero values for inputs which were
not updated, b) load filter values and multiply them with
the input stored in shared memory, c) write outputs. Steps
a) and c) use runtime conditionals against input and output
boundaries, update mask and dilation. Step b) uses a highly
optimized static code that, independent of the input mask
and tile position, always performs all multiply-accumulate

Tile Mode Tile Size s=0% s=50% s=90% s=99%

p.t. Sparse 6x6 17.0 16.9 16.5 7.7
5x5 23.7 23.6 22.9 8.5

Hybrid 6x6 17.0 16.9 15.8 5.0
5x5 23.5 23.2 18.3 4.5

p.p. Sparse 6x6 60.4 51.9 44.3 20.4
5x5 49.6 43.6 38.0 14.1

Table 1. GTX 1050 runtime comparison between different tile
sizes and sparsity levels (s) reported in milliseconds for a 3x3
convolution with 128 input and output channels and a 256x256
pixels input. Since sparsity is generated uniformly, even with a
90% sparse input is very likely have at least one updated pixel per
tile. Per-tile sparse mode always processes either all pixels of a
tile or none of them. Per-pixel sparse mode decides per input pixel
whether it needs to be processed or can be skipped. Hybrid mode
uses dense mode when more than four input pixels are updated and
uses a special implementation for very sparse tiles. Larger tile sizes
cannot be used due to local memory resource limitations.

operations. Very sparse tiles with four or less active input
pixels, making up about 20% of non-empty tiles in our tests,
are accelerated in a special mode which can process sparse
tiles up to 2x faster. This mode loads only pixels of the filter
weights that are required and iterates over an array of active
pixels contrary to iterating over all pixels and checking the
update flag. The performance impact of adding a runtime
conditional to allow for per-pixel sparsity (check each pixel
if processing is required) and the performance of our hybrid
approach compared to a per-tile sparsity (process all pixels
or none) approach are reported in Table 1.

It should be noted that depth-wise convolutions require a
special implementation to stay competitive against cuDNN.
In depth-wise convolutions, every output channel only de-
pends on input values of the corresponding channel in the
input feature map. Because of that, input values are used less
often and (in our implementation) only by a single thread,
removing the necessity of keeping data local to a CTA. When
loading input data, the update flag of a pixel must always be
checked before reading the values because non-updated pix-
els contain invalid data. Since the loaded value is only used
for up to 9 multiplications in the case of a 3x3 convolution,
we fuse loading and multiplication steps described above.
Thus, we decide per pixel if we load the value and perform
the multiplication – resulting in a per-pixel sparse operation
compared to per-tile for standard convolutions. Still, skip-
ping a tile entirely is much faster than processing a single
input pixel.

1.3. Memory layout for bandwidth reductions

Using a per-pixel update mask, we can reduce the mem-
ory bandwidth during inference greatly in many ways. Com-
pared to previous work that had to compare the inputs of



each layer against previous values, we only load values that
were marked as updated. Furthermore, using the update
mask, we do not have to set unchanged values in the feature
map to zero. This allows us to use uninitialized memory
for the greater part of the feature maps - only writing valid
values for updated pixels. Compared to setting all unchanged
output features to zero, this improved the performance of
convolutions in HRNet by up to 68%.

PyTorch’s default memory layout is NCHW , storing
one image per pixel channel. Accessing pixels individually,
however, is very inefficient with this layout, as the minimum
memory access size – a cache line – would always load
multiple neighboring pixels per instruction. For efficient
use of per-pixel sparsity, we store feature maps in NHWC
format. This way, all channels of a pixel are stored coalesced
and can be accessed efficiently.

1.4. Floating point number inaccuracies

While delta updates can in theory be applied indefinitely,
floating point number operations result in slightly different
outcomes when taking large accumulated values or small
deltas as input. With HRNet and Human3.6M, we did not
experience any problems even with sequences thousands of
frames long. However, we did notice small errors accumu-
lating over time in EfficientDet, even with dense inference,
i.e. using negative thresholds. We recommend to reset the
buffers every few hundred frames, or when the network input
switches between different videos, to flush all accumulated
errors due to floating point inaccuracies.

2. Threshold tuning ablation study

In our evaluations, we used a maximum loss increase
target of 3% for the task of threshold tuning. To ensure that
we do not exceed this limit, every truncation threshold is
only allowed to increase the loss by a maximum of 3%

#layers
.

Due to a predefined step size in the threshold tuning process,
however, the actual loss increase is typically much lower.
We evaluated different maximum loss increase targets to
compare the resulting accuracy and speedup (see Figure 1).
To better show the impact of different parameters, we do not
use a high threshold and update mask dilation on the first
layer as this already increases sparsity greatly, and thereby
reduces the impact of the chosen parameters. Instead, we set
the first threshold to a low value of 0.15 manually.

2.1. Training truncation thresholds

We experimented with training truncation thresholds in
parallel instead of auto-tuning them one-by-one. Using the
update mask density as an additional loss, the trade-off be-
tween accuracy and pixel update density could be optimized
more accurately and the accuracy reduction per layer could
be better balanced. E.g. early layers of the CNNs can be al-

0 10 20 30 40 50
0

1

2

3

4

Sp
ee

du
p

0 10 20 30 40 50

26

28

30

32

Max loss increase [%]

A
P@

.5
:.9

5

Figure 1. Accuracy and speedup achieved with EfficientDet-d1 on
the MOT16 dataset with thresholds tuned on different maximum
loss increase targets. Even when using a 30% total loss increase
target, the accuracy stays close to dense inference. With a smaller
step size for threshold tuning, the accuracy could be kept closer to
the maximum loss increase target.

lowed a larger accuracy decrease, because they have a larger
impact on the overall update density.

Instead of boolean update masks, we used soft truncation
with a sigmoid activation function to allow for gradients to
propagate better. With the same intention, we switched to
using norm truncation instead of maximum truncation, i.e.
we compare the L2 norm of a pixel’s deltas against a thresh-
old. This way, all values contribute to the update mask and
the training process is more stable than with maximum trun-
cation. While we managed to train feasible thresholds with
a pre-defined accuracy vs. sparsity trade-off, the resulting
thresholds did not outperform tuned thresholds. Furthermore,
threshold training takes many times longer to process and
hyper parameters are more difficult to tune than the single
parameter used for auto tuning.



Dataset Backend AP@0.5 AP@.5:.95 GFLOPs
Jetson Nano b=1 GTX 1050 b=1 GTX 1050 b=8/3 RTX 3090 b=1 RTX 3090 b=48/24
FPS speedup FPS speedup FPS speedup FPS speedup FPS speedup

MOT16-d0
cuDNN

55.6% 27.8% 5.0
1.4 1.0 26.0 1.0 26.4 1.0 29.3 1.0 368 1.0

ours dense 4.0 2.9 29.3 1.1 28.6 1.1 57.2 2.0 369 1.0
ours ϵ = ∞ 17.9% 6.6% - 8.8 6.3 61.0 2.4 340 12.9 57.0 2.0 2389 6.5

CBInfer 54.3% 27.0% 1.7 2.0 1.4 9.5 0.4 24.3 0.9 15.6 0.5 273 0.7
ours sparse 55.8% 27.8% 2.8 7.9 5.6 48.2 1.9 76.6 2.9 57.2 2.0 896 2.4

MOT16-d1
cuDNN

63.9% 32.2% 12.2
0.7 1.0 10.5 1.0 11.3 1.0 23.3 1.0 169 1.0

ours dense 1.8 2.6 11.6 1.1 11.8 1.0 45.0 1.9 167 1.0
ours ϵ = ∞ 21.7% 7.2% - 6.6 9.4 51.1 4.9 151.6 13.4 44.0 1.9 1032 6.1

CBInfer 63.5% 31.9% 4.6 1.3 1.9 6.3 0.6 9.4 0.8 11.4 0.5 106 0.6
ours sparse 64.0% 32.0% 6.8 3.9 5.6 27.4 2.6 30.9 2.7 45.2 1.9 389 2.3

WildTrack-d0
cuDNN

67.1% 35.4% 5.0
1.4 1.0 26.0 1.0 26.4 1.0 29.3 1.0 383 1.0

ours dense 4.0 2.9 29.3 1.1 28.6 1.1 57.2 2.0 384 1.0
ours ϵ = ∞ 29.5% 14.3% - 8.8 6.3 61.0 2.4 340 12.9 57.0 2.0 2389 6.5

CBInfer 65.4% 33.9% 1.1 2.2 1.6 10.4 0.4 25.0 0.9 16.8 0.6 274 0.7
ours sparse 66.4% 34.7% 2.3 8.1 5.8 56.1 2.2 100 3.8 57.2 2.0 973 2.5

WildTrack-d1
cuDNN

72.1% 41.6% 12.2
0.7 1.0 10.5 1.0 11.3 1.0 23.3 1.0 169 1.0

ours dense 1.8 2.6 11.6 1.1 11.8 1.0 45.0 1.9 167 1.0
ours ϵ = ∞ 28.3% 15.0% - 6.6 9.4 51.1 4.9 151 13.4 45.9 2.0 1032 6.1

CBInfer 71.5% 40.5% 2.4 1.4 2.0 6.8 0.6 10.6 0.9 13.1 0.6 120 0.7
ours sparse 71.6% 40.8% 5.7 4.8 6.9 32.1 3.1 38.6 3.4 44.8 1.9 415 2.5

Table 2. Speed and accuracy comparisons of different CNN backends used for the task of object detection with batch size b. MOT16
is evaluated only on fixed camera videos. Our evaluations show that DeltaCNN achieves higher frame rate and accuracy using the 12.2
GFLOPs d1 configuration of EfficientDet than cuDNN achieves with the 5.0 GFLOPs d0 configuration.


	. Efficient convolution on GPUs
	. Tiling for memory reuse
	. Hybrid dense/sparse tile inference
	. Memory layout for bandwidth reductions
	. Floating point number inaccuracies

	. Threshold tuning ablation study
	. Training truncation thresholds


