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1. Datasets and implementation details

ImageNet-LT [7] is a subset of the large-scale ImageNet
dataset [2], subsampled such that class distributions follow
a Pareto distribution with power value α = 6. The dataset
contains 116k training images from 1,000 categories, with
class cardinality ranging from 5 to 1,280. The dataset is
publicly available, and its usage is limited for research only
(non-commercial or education purposes).

We trained our backbone encoder with parameters fol-
lowing the training setting most commonly used in the lit-
erature [5]: we train ResNext50 models, with cosine clas-
sifiers, for 90 epochs, with weight decay 0.0005, batch size
512, and learning rate initialised at 0.2 with cosine decay to
0. All sampling methods use identical parameter sets.

Places-LT is a subset of the large-scale scene classifica-
tion dataset; Places [11] that is constructed in a similar fash-
ion to the ImageNet-LT dataset [7]. The dataset comprises
of 62.7K training images from 365 categories with class car-
dinality ranging from 5 to 4980. The dataset is publicly
available, and its usage is limited to research only (non-
commercial or education purposes).

We trained a ResNet152, using supervised pre-trained
weights, towards direct comparison with state of the art
methods. Due to the lack of publicly available pre-trained
ResNet152 models, we carry out our backbone analysis and
additional experiments using an unsupervised initialisation
of ResNet101 architectures. All pre-trained weights are ob-
tained by leveraging the full ImageNet dataset according to
standard practice.

All models are trained following standard practice with
regards to parameters commonly found in the literature [4,
7]. We use a batch size of 128, weight decay of 0.0005.
The learning rate is set to 0.001 for the pre-trained back-
bone encoder, and 0.1 for the cosine classifier with a cosine
decay to 0. We train ResNet152 models for 10 epochs, and
ResNet101 models for 15 epochs.

Our method is implemented using PyTorch [8].

2. Societal impact
The potential benefits of low data regime tools often re-

late to reduction of data costs; collection, curation, stor-
age and processing. Our approach in particular, can con-
tribute to reducing recognition bias with regards to under-
represented classes, that involve rare or otherwise difficult
to acquire training samples. Furthermore, our approach al-
lows to adapt pre-trained models to reduce biases or intro-
duce new classes without additional training steps, conse-
quently improving environmental impact. In terms of risks;
making models both readily available and quickly accessi-
ble for novel tasks, at low data and training costs, to individ-
uals without domain expertise, in combination with poten-
tially increased susceptibility to subtle prediction failures,
may increase the risk of both models and their outputs be-
ing used incorrectly.

3. Additional results on the ImageNet dataset
We provide an ablation experiment showing the impact

of changing prototype and classifier roles in Eqs. 4–6. Re-
sults are summarised in Table 1, where the first row report
our original results (prototype to classifier weights atten-
tion). We can see that the best performance is achieved in
our chosen configuration. The decreased performance in
other configurations is to be expected, as less reliable few-
shot classifiers and/or many-shot prototypes are relied on
more heavily in other configurations.

We provide additional results on the ImageNet dataset in
Table 2: we report performance using a model trained using
uniform sampling, as well as a model trained using a bal-
anced softmax loss [9] (vs. regular cross entropy loss). Our
balanced softmax model is retrained using a cosine clas-
sifier, which explains our higher accuracy with regards to
numbers reported in [9]. It may be observed that our ap-
proach continues to improve performance on rare classes,
and in particular we note the high performance on this class
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Table 1. Sensitivity results evaluating the impact of the prototype
to classifier attention mechanism. p −→ w corresponds to the set-
ting described in Eq. 4–6 of the manuscript, w −→ p inverts classi-
fier and prototype roles, w −→ w and p −→ p carry out self attention
with only one kind of class representation.

Many-shot Medium-shot Few-shot Total
p −→ w 63.2 52.1 36.9 54.2
w −→ p 65.0 50.1 28.9 52.9
w −→ w 64.5 51.1 31.3 53.4
p −→ p 62.1 50.1 31.4 52.1

group using a balanced softmax classifier. We further note
how backbones influence our final overall performance (e.g.
uniform vs. square root), highlighting the importance of
training a high quality backbone. We state again that so-
lutions that aim to learn better representations are comple-
mentary of our method, which focuses on handling the few-
shot problem.

4. Attention mechanism class selection
In this section, we evaluate our model ability to select

semantically relevant classes via our attention mechanism.
To this end, we show in Figure 3 the classes with top 10
attention scores for five randomly selected classes. For sim-
plicity, we consider k = 0, such that all classes are treated
identically. To evaluate semantic similarity, we plot class
semantic similarity in the WordNet hierarchy by computing
the Leacock-Chodorow Similarity [6], which measures the
shortest path distance between classes in the graph, while
taking into account their depth in the taxonomy. We can see
that classes with very similar categories are selected (i.e.
dog breeds), allowing for transferring common properties
across these classes.

5. Visualizing the impact of knowlege transfer
Fig 1 shows the impact of knowledge transfer on class

representations, visualising how our knowledge transfer
process adjusts class representations. We can see that af-
ter transfer, the few-shot class representation is pushed to-
wards more accurate class prototypes, while common class
representations remain close to their learned classifier. We
also note that it illustrates how prototypes and trained clas-
sifier representations can differ, highlighting the advantage
of combining these two representations.

6. Additional results on the Places dataset
6.1. Backbone analysis

Further to our ImageNet-LT backbone analysis, we pro-
vide here further study on training strategies of interest, ad-
ditionally for the places dataset. We carry out this study
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Figure 1. UMAP representations of validation samples from a few-
shot class [red cluster] and the top-2 closest classes in terms of
knowledge transfer attention score [purple (many shot class) and
green (medium shot) clusters]. For each class, we also plot proto-
types, classifiers and final classifier.

on the ResNet101 backbone, and consider: a) the sampling
strategy (square root or uniform), and b) the choice of pre-
trained weights (supervised or unsupervised pre-training on
ImageNet). Due to the smaller size of the dataset, experi-
ments in the literature on Places-LT typically initialise the
model backbone encoder with weights pre-trained, in a su-
pervised manner, on the entire ImageNet dataset.

Here, we additionally consider usage of an unsupervised
initialisation, with a model pre-trained on ImageNet using
the SimCLR [1] contrastive learning method. Unsupervised
pre-training has been shown to achieve superior transfer
learning performance in certain circumstances [3]. In addi-
tion, our key incentive is the fact that, in contrast to standard
supervised pre-training, SimCLR relies on a normalised,
distance-based representation learning process, which has
higher compatibility with our cosine classifier strategy.

To evaluate which training strategy yields higher quality
backbones, we consider the same initialisation criteria dis-
cussed in the main manuscript: We compute training and
validation prototypes, and measure accuracy on both the
training (to evaluate underfitting and memorisation), and
test sets. Our analysis is reported in Figure 2. Firstly,
in terms of sampling strategies, we note a limited impact
overall, with square root yielding higher quality prototypes
with supervised initialisation, and uniform sampling having
a very slight edge when using an unsupervised initialisation.



Table 2. Classification accuracies on ImageNet-LT. All methods use a ResNext50 backbone. * models trained with a normalised classifier.

Method Classifier type Many-shot Medium shot Few shot Total

Uniform sampling Cosine classifier 69.2 43.0 15.4 49.2
ensemble

(
wh(0), wh(20), wh(100)

)
62.9 48.9 33.7 52.2

Balanced softmax Cosine classifier 64.2 49.2 32.8 52.7
ensemble

(
wh(0), wh(20), wh(100)

)
61.4 49.9 38.8 52.8
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Figure 2. Influence of data sampling strategies and pre-training weight choice on class separability for the Places-LT dataset. Prototype-
based prediction accuracy is computed with respect to three different class groups on the training and test sets, with prototypes computed
on training and validation sets.

We can see that models trained using a supervised initiali-
sation achieve better training accuracy, suggesting under-
fitting when using an unsupervised initialisation. We note
that the supervised models achieve better performance on
classes with sufficient data, while better performance is ob-
tained for few-shot classes when using unsupervised mod-
els.

Further to this, we seek to analyse the compatibility be-
tween classifiers and prototypes, as well as the sharpness
of our attention mechanism. To evaluate this we compute,
for each class prototype, the cosine distance to all cosine
classifiers weights. Firstly, we evaluate the number of class
prototypes which are not closest to their corresponding co-
sine weight (i.e. the prototype from class A is closer to the
classifier from class B, instead of the classifier from class
A). Selecting the wrong class suggests poorer compatibil-
ity, reducing the accuracy of our attention mechanism and
knowledge transfer process. We report this result in Table 3,
showing that square root models achieve better compatibil-
ity, and that the supervised model yields the worst results.

In addition to this, we evaluate how sharp cosine similar-
ity distributions are between a given prototype and classifier
weights. Intuitively, one seeks sharp distributions, with only
a handful of classes possessing high similarity with the pro-
totype of interest so as to only transfer knowledge from the

Table 3. Number of classes where prototypes are not closest to
their corresponding cosine classifier for multiple backbones.

Backbone Mismatch count
Uniform, Supervised 39
Uniform, Unsupervised 17
Square root, Supervised 0
Square root, Unsupervised 0

most relevant classes. This is visualised in Figure 4, where
it may be observed that backbones relying on unsupervised
weights tend to obtain sharper, and therefore more selec-
tive distributions. While square root and uniform sampling
appear to behave similarly, we note that uniform sampling
yields slightly sharper distributions, giving it a slight edge
again.

In light of this, we expect models initialised with un-
supervised weights to achieve stronger performance due to
their higher prototype / classifier compatibility.

6.2. Ablation experiments

We provide additional detailed results on the Places-LT
dataset for all studied ResNet101 backbones in Table 4. As
was conjectured in the previous section, we achieve better
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Figure 3. For five randomly selected classes, we report the ten nearest classes in terms of cosine similarity, with respect to their semantic
similarity according to the WordNet taxonomy.
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Figure 4. Influence of data sampling strategies and pre-training
weight choice on prototype compatibility and our attention mech-
anism. We report, for sampling and pre-training weights consid-
ered, the average over all prototypes of the sorted cosine similar-
ity between a class prototype and cosine classifier weights of all
classes.

performance using an unsupervised initialisation, and, re-
markably, that performance is equivalent between the two
sampling strategies with 40.2 total accuracy.

Interestingly, the backbone exhibiting the poorest per-
formance combines a supervised initialisation with uniform
sampling, resulting in the weakest performance in almost
all settings. Nonetheless, we note that all backbone con-
figurations outperform state of the art method [10] when
employing a ResNet101 backbone.
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Table 4. Detailed classification accuracies and ablations on the Places-LT dataset. Bold numbers highlight the best performing classifier
type per backbone.

Method Many-shot Medium shot Few shot Total

Supervised initialisation, square root

Prototypes 42.6 39.7 27.9 38.3
Cosine classifier 47.5 35 19.7 36.3
Classifier + prototypes 46.6 37.2 22.1 37.4
wh(20) 41.6 30.4 44.8 37.5
wh(100) 27.8 46.9 33.2 37.1
ensemble(whc(20),whc(100)) (continual) 36.2 37.8 41.9 38.1
ensemble(wh(0),wh(20),wh(100)) 40.8 40.1 34.9 39.3

Unsupervised initialisation, square root

Prototypes 39.7 38.6 29.6 37.1
Cosine classifier 48.4 33.8 18.2 35.8
Classifier + prototypes 45.7 38.4 25.1 38.2
wh(20) 42.3 32.6 44.3 38.6
wh(100) 31.0 47.2 34.2 38.6
ensemble(whc(20),whc(100)) (continual) 38.5 38.4 39.5 38.6
ensemble(wh(0),wh(20),wh(100)) 41.6 41.4 35.1 40.2

Supervised initialisation, uniform

Prototypes 43.1 38.3 29.7 38.2
Cosine classifier 48.1 25.7 10.0 30.5
Classifier + prototypes 47.4 35.0 21.0 36.5
wh(20) 42.2 34.3 39.8 38.3
wh(100) 31.6 44.1 31.9 37.0
ensemble(whc(20),whc(100)) (continual) 34.9 37.7 37.0 36.5
ensemble(wh(0),wh(20),wh(100)) 40.6 39.7 34.8 39.0

Unsupervised initialisation, uniform

Prototypes 40.3 38.1 29.9 37.1
Cosine classifier 48.9 27.0 13.2 32.0
Classifier + prototypes 46.4 37.0 24.1 37.7
wh(20) 43.0 35.2 41.5 39.4
wh(100) 33.5 45.8 34.5 39.0
ensemble(whc(20),whc(100)) (continual) 38.9 38.9 37.7 38.7
ensemble(wh(0),wh(20),wh(100)) 42.0 41.7 34.3 40.2

Disalign R101 [10] 39.1 42.0 29.1 38.5
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