Appendix: Fair Contrastive Learning for Facial Attribute Classification
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A. Definition of Ideally Biased Dataset

To confine a wide variety of data bias, we first define an
ideally biased dataset that satisfies the following conditions.

1. The dataset has m target and sensitive classes (i.e.,
Ny = Ny = m). Each target and sensitive class con-
tains the same number of data.

2. Target classes are biased to sensitive classes with a one-
to-one mapping. That is, each target class has only one
biased sensitive class, and no more than one target class
has the same biased sensitive class.

3. In each target class, biased sensitive class has r times
more data than other sensitive classes.

4. Target classes are highly biased to sensitive classes (i.e.,
r > m?).

We illustrated it in Figure 1, where the number of data in
non-biased classes is set to C'. All the proof below is based
on this ideally biased dataset.

m sensitive classes
biased sensitive class

¢ Cc . C  Ci{C i C . C

.
.
biased sensitive class

m target classes

c.c;,c;c. CcicCc rC

Figure 1. The composition of the ideally biased dataset. It has
m target and sensitive classes, and each target class has only one
biased sensitive class. C' represents the number of data in non-
biased classes and r is the bias for biased sensitive classes.

B. Mathematical Proof on Theorem 1

In the main paper, we demonstrated that SupCon will
lead the encoding networks to learn sensitive attribute infor-
mation based on Theorem 1. We provide the mathematical

proof for the theorem below.

Assumption 1

Let input data come from the ideally biased dataset (refer
to Sec. A), where X s f/, S denote input images, target
class labels, and sensitive attribute labels, respectively. We
note that target classes are highly correlated with sensitive
attributes in the dataset (r > m?).

Definition 1

Learning of sensitive attribute information indicates an
increase of I(Z; S), where 1(Z; S) = Ep(. 3 log %
and Z denotes the visual representation.

Assumption 2

Let ¢;, t,, be random points in training time when

I(Z4;8) < I(Zt; S).

Axiom 1

Given X, Y, and S, for all z, |Z,(3)] =
Cr+ (m —1)C — 1, which is a constant.

Definition 2

Lzup = ZziEZ ZZpEZp(’i) |:10g (Zzaeza(i) ¢a):| ’

Definition 3

Ly =3 ez Zz,,ezp(i) log ¢p.

Proposition 1

ISup — C’(fL;“P + L3"P), where (' is a constant.
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Definition 4

Let V! and V)™ be the values of L:"?, x € {p,a}, att,
and t,,, respectively.

For example, the value of L "? at a certain point in train-
ing time, ¢;, can be represented as:
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where ¢l = exp(21* - 2lr /7), x € {p,a}, k € {I,m}.

Definition 5
Let Z,(i)=Z5(i) U Z4(i), where Z5(i) = {2, € Z,(i)]
5, =3, and Z2(i) = {2, € Z,(i)|5, # &}, x € {p,a}.

Proposition 2
From Definition 2, 3, 4 and 5,
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Conjecture 1
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c) ZzpeZ; (i) log 425? < Zzpez;(i) log ¢Zm
d) Zzpezd(i) log ¢;” > ZZPEZd(i) log ¢Zm

From Assumption 2, I(Z";S) < I(Z'";5), hence
the similarity between z; and Z} (¢) is larger at ¢,, than ¢;.
Meanwhile, the similarity between z; and Z{(i) is smaller
at t,,, than at ¢;.

Proposition 3
Leta,, ,B., € RT, x € {p,a}, then
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where o, is an increasing rate of similarity between an
anchor and each sample from ¢; to t,,. Conversely, /3. is
the decreasing rate of similarity.

proof.
By Conjecture 1,
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Assumption 3

Let o be the mean increasing rate of similarity (i.e.,
a,) over Z5(i) and 3., be the mean decreasing rate of
similarity (i.e., 3.,) over Z4(i), then o, ~ ...

Definition 6
In Eq. 5, let the mean ¢! over Z:(i) be ¢k
—d
over Z4(i) be ¢

S
and that

Assumption 4
t d ..
and ¢4 by sensitive
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Lemma 1

Given X, Y, and S, for all ¢, t,,, Vit > yim,

proof.

From Proposition 3,

> (+as,)el

2o €25 (1)

+ Y -8, q>“)]

2a€Z2(i)

vin=3% %" [log(

2 €7 2y€Z, (i)

Z 1+ aza)¢zl

€25 (i)

+ Y (-5 ¢>“)]

2o €Z2(3)

~Y % [log(

2, €Z ZI,EZP(Z‘)

(10)

Note that @, and f3,, are defined in Assumption 3. Then

we compare V' and V! as follows.
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By Definition 6, it is rephrased as follows.
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From Assumption 4, gbff ] gbff + ¢. Based on this,
AV, is approximated as follows.
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where we omit e for readability since € < d)c’;’ , In the
ideally biased dataset, regardless of z; and z,, | Z2(i)|=rC +
(m —1)C and |Z%(i)| = (m — 1)rC + (m — 1)2C. Thus,



we can reformulate Eq. 13 as follows.
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By Assumption 3, it is approximated as follows.
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Here, m > 2,7 > m?2, C > 0 (.- Assumption 1), a;. > 0
(. Proposition 3), and ¢! > 0 (.- Definition 4). Therefore,
AV, <0.

Lemma 2
Given X, Y, and S, for all ;, t,, Vp“ < th"h

proof.

By Proposition 3,
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Similar to Eq. 11, we compare V)™ and V;/* as follows.
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Here, log(1 — o) ~ log(1 — ij) (.- Assumption 3), and
log(1 — a@z,) ~ —log(1 + @z,) since log(1) = 0 and
(“37%{(1) = 1. Therefore, log(1 + az,) ~ —log(1 — 3.,).
Based on this, we can approximate AV, as follows.
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where 1 is an indicator function. In the ideally biased

dataset, 3°, ;3. czey 1 = (rC)* + (m — 1)C? and
>eez Zzpezg(i) 1=2(m—1)rC?+(m—1)(m—2)C2.
Therefore, we rephrase it as follows.
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where A = —1 + V2. Finally, AV, > 0 since m > 2,
r >m?2,and C > 0 (" Assumption 1).

Theoren3 1~ B
Given X, Y, and S, for all ¢;, t,,,, V¥ > Vim,

proof.
From Lemma 1 and 2, V' > V'™ and V' < Vi for

all t;,t,,. Since V' = C’(—V}f’“ + V,!*) by Proposition 1,
Vit > Vin forall ty, t,

Corollary 1

Learning sensitive attribute information decreases LSup,
given X, Y, and S.

proof.
From Definition 1, learning of sensitive attribute infor-
mation equals to the increase of I(Z; 5‘) In addition, the
increase of 1(Z; S) corresponds to a transition from #; to



tm since I(Z; 5’) is always higher at t¢,,, than at ¢; (.- As-
sumption 2). Finally, V' is always smaller than V' (.-
Theorem 1), therefore, learning sensitive attribute informa-
tion decreases LV,

Method ~ Adversarial Training ~ EO (]) Acc. (1)
SupCon X 30.5+£1.3  80.5+0.7
v 20.0£0.3  77.2+0.1
FSCL+ X 6.5+0.4  79.14+0.1
v 20.5+04 77.84£0.2
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Table 1. Effectiveness of adversarial training in classifier train-
ing stage on CelebA. We set attractiveness and male to the
target class and sensitive attribute, respectively.

C. Fairness Strategy in Classifier Training
Stage

In Table 1, we explore the effectiveness of applying
GRL [17] in the classifier training stage, after finishing the
representation learning with SupCon and FSCL+. To this
end, we deploy an additional classifier for the sensitive at-
tribute and do not freeze the encoder and projection networks
in the second stage. As might be expected, GRL improves
the fairness of SupCon by sacrificing the classification accu-
racy. Meanwhile, it degrades EO as well as the classification
accuracy in ours. We speculate that it is because the fair rep-
resentation learned by FSCL+ becomes biased by re-training
the encoding networks with the cross entropy loss and GRL.
The similar results of EO and top-1 accuracy between Sup-
Con with GRL and FSCL+ with GRL support that the learned
representation is almost renewed in the classifier training
stage. In conclusion, the results show that applying the addi-
tional strategy for fairness in the classifier training stage is
not effective to our method.

D. Modification for Incomplete Supervised Set-
ting

To apply our method to the environment where target

class labels are not provided, we introduce F'S CL', which

a modified version of FSCL. We set a positive sample to

another patch from the same image with an anchor and
negative samples to Z;, and Z,,. It is formulated as follows.

exp(z; - 2p/T)
2rezi) €p(%i- 23/7)’

FSCL' =~ log (20)

2, €Z

where Z7(i) = {2} € Z|s} = 8;}. Except for the loss
function, the overall structure is the same as the original.

Figure 2. t-SNE visualizations with random intialization.

E. Details of t-SNE Visualization

For the t-SNE [23] visualization, we exploit the models
pre-trained on CelebA dataset [14] for 100 epochs. Then
we obtain 50 random samples (i.e., representation) per data
group with the pre-trained models. Before applying the t-
SNE algorithm, we reduce the dimensionality of the samples
using PCA reduction. We tune the hyperparameters in the
scikit-learn implementation as follows.

e Perplexity: from 10 to 40 by 1
e Learning rate: 10 or 100
e Jteration= 100, 1000, or 10000

We set the perplexity, learning rate, and iterations 10, 10,
and 10000 respectively, but in all the cases, we note that
representation learned by FSCL+ is more agnostic to the
sensitive attribute than that learned by SupCon. Furthermore,
we provide t-SNE plots without PCA reduction in Figure 2
since it considerably affects the structure of representations.
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Figure 3. Classification results on UTK Face dataset. We set gen-
der and age to the target class and sensitive attribute, respectively.
It shows trends of classification accuracy and equalized odds (EO)
at different av.

F. Further Experiments on UTK Face

In Figure 3, we provide experimental results on UTK Face
with the other sensitive attribute, age. It shows that FSCL+
maintain the fairest EO and the best top-1 accuracy at all a.
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Figure 4. Experimental results in figure form on CelebA dataset. It shows the trade-off performances between ACC. and EO more clearly.
The upper left corner of the plots corresponds to the optimal trade-off performance.

Attributes CE[7] GRL[17] LNL[13] FD-VAE [16] MFD[11] SupCon [12] FSCL FSCL+
EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.
T=a/S=m 2784102 79.6+05 249403 772405 218404 799+05 151201 769400 7403 780103 30.5+13 805407 115403 79.1+04 65104 791404
T=a/S=y 168403 79.8404 147104 74.6404 137105 743104 148102 775401 149104 80.0103 217410 80.140s 13.0406 791105 12405 79.1:05
T=b/S=m 176105 840105  140i03 825i05 107102 823:04 112001 8l6s0s  73:02 780105  207i05 846105  70s04 S821i0s  47:05 829504
Tob/S=y 147101 845105  100s02 833105 68105 823105 67102 817100  Sdio:  780s0s 169109 S8ddios  6dsos 838104  48.05 Shlies
T=e/S=m 15005 839:02 67104 819106  50:05 816205 57200 826504 8705 790104  208:1; 843:05 3808 827:0s 30504 834104
T=e / S=y 127402 838403 59104 823104 33104 803206 62101 840102 52102  78.0x02 108410 84.010.7 1.8203  82.004 1.6:03 83.5:03
T=a & o/S=m 30.0102 73905 17.8402 73.1105 167104 729105 182101 734401 8.7:04 740203 22.8:07 74005 81103 T4li03 3.6:03 748104
T=b &e/S=m 129492 72.6+0.4 94103 Tl4toa 7402 708405 82+01 702402 9.0401  70.0+40.1 125508 727409 68104 711402 25106 708105
T=a/S=m &y 313103 79.5:04 229404 78.610.5 207103 777105 199400 78.040.1 194402 76.1:03 244415 817407 199405 794103 170105 772405

Table 2. Classification results on CelebA. We further specify the standard deviation in this table.

Although FD-VAE [16] achieves similar EO with FSCL, its
accuracy is significantly inferior to ours. It indicates that ours
highly outperform it in terms of the trade-off performance
between fairness and accuracy.

G. Additional Experimental Results on CelebA

To clearly show the trade-off performances between clas-
sification accuracy and fairness, we plot the experimental
results on CelebA in Figure 4. FSCL+ achieves the best
trade-off performances in all the results. Furthermore, we
supplement the experimental results by reporting standard
deviation in Table 2.

H. Dataset Composition
H.1. CelebA and UTK Face

In CelebA [14], we conduct experiments in terms of a
variety of target and sensitive attribute pairs. Table 3 shows
the specific composition of the training set in all the settings.
In UTK Face [27], we involve 10,000, 2,400, and 2,400 data
in the training, validation, and test sets, respectively. We pro-
vide the various compositions of the training set according
to o in Table 4.

H.2. Dogs and Cats

Similar to UTK Face, we leverage 3,425 black cat and
white dog images, and 685 white cat and black dog images
for training. The test set includes 2,400 images which are



CelebA

a=0 a=1 b=1 e=0 e=1
m= 29,920 64,589 m=0 84,954 9,555 m= 84,963 9,546
m=1 49,247 19,014 m=1 39,475 28,786 m=1 44,527 23,734
a=0 a=1 b=1 e=0 e=1
y=0 30,618 5,364 m=0 19,164 16,818 m= 22,146 13,836
y=1 48,549 78,239 m=1 105,265 21,523 m=1 107,344 19,444
a=0 a=1 m=0 m=1 m=0 m=1
m=0,y=0 7,522 3,645 a=0,0=0 13,995 27,966 b=0,¢e=0 78,613 30,481
m=1,y=0 23,096 1,719 a=1,0=0 30,943 11,380 b=1,e=0 6,350 14,046
m=0,y=1 22,398 60,944 a=0,0=1 15925 21,281 b=0, e=1 6,341 8,994
m=1,y=1 26,151 17,295 a=1,0=1 33,646 7,634 b=l e=1 3,205 14,740

Table 3. Composition of the training set of CelebA. a, b, e, 0, m, and y denote attractiveness, bignose, bags-under-eyes, mouth-slightly-open,

male, and young, respectively.

UTK Face

a=2/la=3/a=4

Ethinicity

Age

Caucasian Others

More than 35 Others

Female
Male  3,334/3,750 /4,000

1,666/1,250/1,000 3,334 /3,750 /4,000
1,666/ 1,250/ 1,000

1,666 /1,250 /1,000
3,334 /3,750 /4,000

3,334 /3,750 / 4,000
1,666/ 1,250/ 1,000

Table 4. Composition of the training set of UTK Face. o denotes the intensities of data imbalance.

completely balanced. We note that it is different from the
original setting in [ 3]. In the study, the target attribute and
bias are completely correlated in the training set. For in-
stance, cats are always black and dogs are always white.
Although they solved the task by utilizing the pixel-level of
bias labels (i.e., RGB values of each pixel), it is an almost
unsolvable problem with only the image-level of labels since
the target attribute and bias labels are always the same at the
image-level. Therefore, we designed the task more reason-
able to validate fairness methods which mostly exploit the
image-level of labels.

H.3. Discussion on License and Data Collection

Both CelebA [14] and UTK Face [27] have a non-standard
license (i.e, Custom (non-commericial)), but the creators
clarify the datasets are available for non-commercial research
purposes only.

CelebA consists of the images collected from Celeb-Faces
dataset [21] and attribute labels. According to [21], the im-
ages are collected by searching names of celebrities on the
web. Also in UTK Face, the creators combine the images
from CACD [3] and Morph [10] datasets with the images
crawled in Bing and Google search engines. In both CACD
and Morph, the images are gathered by searching on the
web.

I. Implementation Details
L.1. Structure of Comparable Models

Cross-Entropy [7] , GRL [17], LNL [13]: The models uti-
lize ResNet-18 [7] for backbone networks and a MLP with
one hidden layer for classifiers. The dimensions of represen-
tation are the same as ours. GRL and LNL are reproduced
based on [13, 17], and the hyperparameter to determine a
weight for the reversed gradient is searched in the range from
0.01 to 0.1 in each experiment. For LNL, hyperparameter A
for regularization loss is searched in the range from 0.01 to
0.1 in each experiment. For all the models, we train them in
an end-to-end manner for 100 epochs.

FD-VAE [16]: We build the model with the same struc-
ture as the original paper [16] without the encoder network.
For a fair comparison, we substitute the encoder network
to ResNet-18 and obtain better reproduction performances.
Following the paper, we separate each latent space to have
the same dimensions to each other and set hyperparameter 3
to 1. The other hyperparameters are found by grid searching
and setto a = 1,y =5, and A = 1 for all the experiments.
For representation learning, we train the encoder networks
for 100 epochs. After that, we train the classifiers for down-
stream tasks for 10 epochs.

MFD [11]: We implement the model with source code



released by the authors. The teacher and student models both
leverage ResNet-18 for backbone networks and a MLP with
one hidden layer for a classifier. Following the original paper,
we train the models for 50 epochs and set hyperparameter A
to 7 and 5 for CelebA and UTK Face, respectively. For Dogs
and Cats, A is determined as 7 through grid searching.

SupCon [12], SimCLR [4], FSCL (ours): We implement
SupCon and SimCLR with source code released by the au-
thors of [12], and FSCL is also based on the code (which is
licensed under the terms of the MIT license). The models
use ResNet-18 [7] for the encoder network and a MLP with
two hidden layers for the projection network, which have
256 hidden nodes.

I.2. Augmentation Strategy and Experimental
Setup

For the models based on contrastive loss, we augment
two patches per image. Except for this, we use the same
augmentation strategy [4] for all the models. Specifically,
we sequentially and randomly apply cropping and resizing,
horizontal flipping, color jittering, and gray scaling.

For all the models, we set the identical environments of
SGD optimizer with momentum [ 18], batch sizes of 128,
and learning rate of 0.1. All the experiments are based on the
PyTorch library and are conducted in a Linux environment
with 4 NVIDIA Titan Xp GPUs with 12GB of memory.

Method Regularization EO()) Acc. (1)
Standard 213410 763102

GDRO Early Stopping 40 101 747101
Strong Ly (Ir=0.1) 87 106 763101

Strong Ly & Group adjustments (C=5) 8.0 429 77.1 192

FSCL+ Standard 6.5:04  79.140.1

Table 5. Comparison with GDRO on CelebA. We set attractive-
ness and male to the target class and sensitive attribute, respectively.

J. Comparison with GDRO

GDRO [19] is one of the state-of-the-art methods to min-
imize the performance gaps between data groups and has
a goal similar to our group-wise normalization. Thus, we
report comparison results with GDRO in Table 5. Following
the original paper, we search for the best C in the range of
[0, 5]. The results show that ours achieves a better trade-off
performance than GDRO.

K. Two kinds of Supervised Contrastive Losses

In this section, we summarize two kinds of supervised
contrastive losses (i.e., L, and L") proposed in [12]
and why we leverage L.} as our baseline. Unlike L.\ (i.e.,
LS"P in the main paper), L;"? places the summation over

positive samples and the normalization factor inside the log
as follows.

! ¢
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(21)
In the loss, the normalization factor works as a constant

(i.e., — ZZ_E 4 log ﬁ), so it cannot normalize the imbal-
i P

ance in the positive samples. As the result, L;"” is more

vulnerable to the data bias and shows inferior classification
performances to L3.7. For these reasons, we utilize the latter
as our baseline.

L. Discussion on Limitations

In this section, we discuss two limitations of our study.
The first one is that our work is confined to the image clas-
sification task. We discuss it by explaining why we cover
the task in this paper. One reason is that the superior per-
formance of our baselines (i.e., SupCon and SimCLR) has
been experimentally validated in the image classification
task [4, 12]. Therefore, through the task, we can make a fair
comparison with the models and convincingly demonstrate
our improvement over them. The other reason is that image
classification is a fundamental and common task not only
in contrastive representation learning [4, 12,22, 26] but in
fairness studies in the field of computer vision [5, 16,20,25].
Although fair visual representation can be exploited in other
tasks, such as object recognition [24], image-to-image trans-
lation [8, 9], face recognition [2, 6], and object detection [1],
each of them requires a suitable notion of fairness [1, 24]
and specialized architectures [0, 8, 9]. Therefore, to achieve
the best performance on the tasks, we also need to modify
the proposed loss more appropriately for them. We leave the
extension of FSCL to broader tasks for future work.

Second, our method essentially requires sensitive attribute
labels to improve fairness. Even though supervision of the
sensitive attribute labels is common in the literature on fair
classification [5, 15, 16,20], sometimes we cannot access the
labels and it is laborious and expensive to annotate them.
Although we show that our method can reduce such costs
by effectively improving fairness using only a few labels,
it cannot be utilized in the complete absence of the labels.
Therefore, future works that develop a fair contrastive loss
free of the sensitive attribute labels would make a significant
contribution to the research community. We expect our study
to be a bridgehead for them.
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