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A. Definition of Ideally Biased Dataset
To confine a wide variety of data bias, we first define an

ideally biased dataset that satisfies the following conditions.

1. The dataset has m target and sensitive classes (i.e.,

Nt = Ns = m). Each target and sensitive class con-

tains the same number of data.

2. Target classes are biased to sensitive classes with a one-

to-one mapping. That is, each target class has only one

biased sensitive class, and no more than one target class

has the same biased sensitive class.

3. In each target class, biased sensitive class has r times

more data than other sensitive classes.

4. Target classes are highly biased to sensitive classes (i.e.,
r ≥ m2).

We illustrated it in Figure 1, where the number of data in

non-biased classes is set to C. All the proof below is based

on this ideally biased dataset.
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Figure 1. The composition of the ideally biased dataset. It has

m target and sensitive classes, and each target class has only one

biased sensitive class. C represents the number of data in non-

biased classes and r is the bias for biased sensitive classes.

B. Mathematical Proof on Theorem 1
In the main paper, we demonstrated that SupCon will

lead the encoding networks to learn sensitive attribute infor-

mation based on Theorem 1. We provide the mathematical

proof for the theorem below.

Assumption 1

Let input data come from the ideally biased dataset (refer

to Sec. A), where X̃ , Ỹ , S̃ denote input images, target

class labels, and sensitive attribute labels, respectively. We

note that target classes are highly correlated with sensitive

attributes in the dataset (r ≥ m2).

Definition 1

Learning of sensitive attribute information indicates an

increase of I(Z; S̃), where I(Z; S̃) = EP (z,s̃) log
P (z,s̃)

P (z)P (s̃)

and Z denotes the visual representation.

Assumption 2

Let tl, tm be random points in training time when

I(Ztl ; S̃) < I(Ztm ; S̃).

Axiom 1

Given X̃ , Ỹ , and S̃, for all zi, |Zp(i)| =
Cr + (m− 1)C − 1, which is a constant.

Definition 2

Lsup
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

(∑
za∈Za(i)

φa

)]
.

Definition 3

Lsup
p =

∑
zi∈Z

∑
zp∈Zp(i)

log φp.

Proposition 1

LSup = Ĉ(−Lsup
p + Lsup

a ), where Ĉ is a constant.
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Proof.

LSup = −
∑
zi∈Z

1

|Zp(i)|
∑

zp∈Zp(i)

log
φp∑

za∈Za(i)
φa

= −
∑
zi∈Z

1

|Zp(i)|
∑

zp∈Zp(i)

log φp

+
∑
zi∈Z

1

|Zp(i)|
∑

zp∈Zp(i)

log
∑

za∈Za(i)

φa

=
1

|Zp(i)|
(
− Lsup

p + Lsup
a

)
= Ĉ

(
− Lsup

p + Lsup
a

)
(∵ Axiom1).

(1)

Definition 4
Let V tl

x and V tm
x be the values of Lsup

x , x ∈ {p, a}, at tl
and tm, respectively.

For example, the value of Lsup
a at a certain point in train-

ing time, tl, can be represented as:

V tl
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Za(i)

φtl
a

)]
, (2)

where φtk
x = exp(ztki · ztkx /τ), x ∈ {p, a}, k ∈ {l,m}.

Definition 5
Let Zx(i)=Z

s
x(i) ∪ Zd

x(i), where Zs
x(i) = {zx ∈ Zx(i)|

s̃x = s̃i, } and Zd
x(i) = {zx ∈ Zx(i)|s̃x �= s̃i}, x ∈ {p, a}.

Proposition 2
From Definition 2, 3, 4 and 5,

V tk
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Za(i)

φtk
a

)]

=
∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

φtk
a +

∑
za∈Zd

a(i)

φtk
a

)]
.

(3)

V tk
p =

∑
zi∈Z

[ ∑
zp∈Zp(i)

log φtk
p

]

=
∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log φtk
p +

∑
zp∈Zd

p (i)

log φtk
p

]
.

(4)

Conjecture 1
a)

∑
za∈Zs

a(i)
φtl
a <

∑
za∈Zs

a(i)
φtm
a

b)
∑

za∈Zd
a(i)

φtl
a >

∑
za∈Zd

a(i)
φtm
a

c)
∑

zp∈Zs
p(i)

log φtl
p <

∑
zp∈Zs

p(i)
log φtm

p

d)
∑

zp∈Zd
p (i)

log φtl
p >

∑
zp∈Zd

p (i)
log φtm

p

From Assumption 2, I(Ztl ; S̃) < I(Ztm ; S̃), hence

the similarity between zi and Zs
k(i) is larger at tm than tl.

Meanwhile, the similarity between zi and Zd
k(i) is smaller

at tm than at tl.

Proposition 3
Let αzx , βzx ∈ R+, x ∈ {p, a}, then

V tm
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

(1 + αza)φ
tl
a

+
∑

za∈Zd
a(i)

(1− βza)φ
tl
a

)]
,

(5)

V tm
p =

∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log(1 + αzp)φ
tl
p

+
∑

zp∈Zd
p (i)

log(1− βzp)φ
tl
p

]
,

(6)

where αzx is an increasing rate of similarity between an

anchor and each sample from tl to tm. Conversely, βzx is

the decreasing rate of similarity.

proof.
By Conjecture 1,∑

za∈Zs
a(i)

φtm
a =

∑
za∈Zs

a(i)

(1 + αza)φ
tl
a ,

∑
za∈Zd

a(i)

φtm
a =

∑
za∈Zd

a(i)

(1− βza)φ
tl
a ,

∑
zp∈Zs

p(i)

log φtm
p =

∑
zp∈Zs

p(i)

log(1 + αzp)φ
tl
p ,

∑
zp∈Zd

p (i)

log φtm
p =

∑
zp∈Zd

p (i)

log(1− βzp)φ
tl
p .

(7)

Therefore,

V tm
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

φtm
a +

∑
za∈Zd

a(i)

φtm
a

)]

=
∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

(1 + αza)φ
tl
a

+
∑

za∈Zd
a(i)

(1− βza)φ
tl
a

)]
,

(8)



V tm
p =

∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log φtm
p +

∑
zp∈Zd

p (i)

log φtm
p

]

=
∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log(1 + αzp)φ
tl
p

+
∑

zp∈Zd
p (i)

log(1− βzp)φ
tl
p

]
.

(9)

Assumption 3

Let αzx be the mean increasing rate of similarity (i.e.,
αzx) over Zs

x(i) and βzx be the mean decreasing rate of

similarity (i.e., βzx ) over Zd
x(i), then αzx ≈ βzx .

Definition 6

In Eq. 5, let the mean φtl
a over Zs

a(i) be φtl
a

s
and that

over Zd
a(i) be φtl

a

d
.

Assumption 4

Let the difference between φtl
a

s
and φtl

a

d
by sensitive

attribute information be ε ∈ R+. Then, φtl
a

s ≈ φtl
a

d
+ ε,

where ε � φtx
a

d
, φtx

a

s
.

Lemma 1

Given X̃ , Ỹ , and S̃, for all tl, tm, V tl
a ≥ V tm

a .

proof.

From Proposition 3,

V tm
a =

∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

(1 + αza)φ
tl
a

+
∑

za∈Zd
a(i)

(1− βza)φ
tl
a

)]

≈
∑
zi∈Z

∑
zp∈Zp(i)

[
log

( ∑
za∈Zs

a(i)

(1 + αza)φ
tl
a

+
∑

za∈Zd
a(i)

(1− βza)φ
tl
a

)]
.

(10)

Note that αza and βza are defined in Assumption 3. Then

we compare V tm
a and V tl

a as follows.

ΔVa = V tm
a − V tl

a

≈
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(∑
za∈Zs

a(i)
(1 + αza)φ

tl
a∑

za∈Za(i)
φtl
a

+

∑
za∈Zd

a(i)
(1− βza)φ

tl
a∑

za∈Za(i)
φtl
a

)]

=
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

∑
za∈Zs

a(i)
αzaφ

tl
a∑

za∈Za(i)
φtl
a

−
∑

za∈Zd
a(i)

βzaφ
tl
a∑

za∈Za(i)
φtl
a

)]
.

(11)

By Definition 6, it is rephrased as follows.

ΔVa =
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

∑
za∈Zs

a(i)
αza φ

tl
a

s

∑
za∈Za(i)

φtl
a

−
∑

za∈Zd
a(i)

βzaφ
tl
a

d

∑
za∈Za(i)

φtl
a

)]
.

(12)

From Assumption 4, φtx
a

s ≈ φtx
a

d
+ ε. Based on this,

ΔVa is approximated as follows.

ΔVa ≈
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

(∑
za∈Zs

a(i)
αza∑

za∈Za(i)
φtl
a

−∑
za∈Zd

a(i)
βza

)
φtl
a

d)]
,

(13)

where we omit ε for readability since ε � φtx
a

d
, φtx

a

s
. In the

ideally biased dataset, regardless of zi and zp, |Zs
a(i)|=rC +

(m − 1)C and |Zd
a(i)| = (m − 1)rC + (m − 1)2C. Thus,



we can reformulate Eq. 13 as follows.

ΔVa =
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

(
(rC + (m− 1)C)αza∑

za∈Za(i)
φtl
a

−((m− 1)rC + (m− 1)2C)βza

)
φtl
a

d)]

=
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

(m+ r − 1)C
(
(αza∑

za∈Za(i)
φtl
a

−(m− 1)βza)φ
tl
a

d))]
.

(14)

By Assumption 3, it is approximated as follows.

ΔVa ≈
∑
zi∈Z

∑
zp∈Zp(i)

[
log

(
1 +

(m+ r − 1)C∑
za∈Za(i)

φtl
a

×
(
((2−m)αza)φ

tl
a

d))]
≤ 0.

(15)

Here, m ≥ 2, r > m2, C > 0 (∵ Assumption 1), αza > 0
(∵ Proposition 3), and φtl

a > 0 (∵ Definition 4). Therefore,

ΔVa ≤ 0.

Lemma 2
Given X̃ , Ỹ , and S̃, for all tl, tm, V tl

p < V tm
p .

proof.
By Proposition 3,

V tm
p =

∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log(1 + αzp)φ
tl
p

+
∑

zp∈Zd
p (i)

log(1− βzp)φ
tl
p

]

≈
∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log(1 + αzp)φ
tl
p

+
∑

zp∈Zd
p (i)

log(1− βzp)φ
tl
p

]
.

(16)

Similar to Eq. 11, we compare V tm
p and V tl

p as follows.

ΔVp = V tm
p − V tl

p =
∑
zi∈Z

[ ∑
zp∈Zs

p(i)

log
(1 + αzp)φ

tl
p

φtl
p

+
∑

zp∈Zd
p (i)

log
(1− βzp)φ

tl
p

φtl
p

]
.

(17)

Here, log(1− αzp) ≈ log(1− βzp) (∵ Assumption 3), and

log(1 − αzp) ≈ − log(1 + αzp) since log(1) = 0 and
d log(1)

dx = 1. Therefore, log(1 + αzp) ≈ − log(1 − βzp).
Based on this, we can approximate ΔVp as follows.

ΔVp ≈ log(1 + αzp)
( ∑

zi∈Z

∑
zp∈Zs

p(i)

�−
∑
zi∈Z

∑
zp∈Zd

p (i)

�

)
,

(18)

where � is an indicator function. In the ideally biased

dataset,
∑

zi∈Z

∑
zp∈Zs

p(i)
� = (rC)2 + (m − 1)C2 and∑

zi∈Z

∑
zp∈Zd

p (i)
� = 2(m−1)rC2+(m−1)(m−2)C2.

Therefore, we rephrase it as follows.

ΔVp =
((

(rC)2 + (m− 1)C2
)

−
(
2(m− 1)rC2 + (m− 1)(m− 2)C2

))
log(1 + αzp)

= C2
(
r2 + (−2m+ 1)r −m2 + 4m− 3

)
log(1 + αzp)

= C2
(
(r + λm)(r − ((2 + λ)m− 1)) + (4− λ)m− 3

)
× log(1 + αzp) > 0 s.t. r > (2 + λ)m− 1

(19)

where λ = −1 +
√
2. Finally, ΔVp > 0 since m > 2,

r > m2, and C > 0 (∵ Assumption 1).

Theorem 1
Given X̃ , Ỹ , and S̃, for all tl, tm, V tl > V tm .

proof.
From Lemma 1 and 2, V tl

a ≥ V tm
a and V tl

p < V tm
p for

all tl, tm. Since V tk = Ĉ(−V tk
p + V tk

a ) by Proposition 1,

V tl > V tm for all tl, tm.

Corollary 1
Learning sensitive attribute information decreases LSup,

given X̃ , Ỹ , and S̃.

proof.
From Definition 1, learning of sensitive attribute infor-

mation equals to the increase of I(Z; S̃). In addition, the

increase of I(Z; S̃) corresponds to a transition from tl to



tm since I(Z; S̃) is always higher at tm than at tl (∵ As-

sumption 2). Finally, V tm is always smaller than V tl (∵
Theorem 1), therefore, learning sensitive attribute informa-

tion decreases LSup.

Method Adversarial Training EO (↓) Acc. (↑)

SupCon � 30.5±1.3 80.5±0.7

� 20.0±0.3 77.2±0.1

FSCL+ � 6.5±0.4 79.1±0.1

� 20.5±0.4 77.8±0.2

Table 1. Effectiveness of adversarial training in classifier train-
ing stage on CelebA. We set attractiveness and male to the

target class and sensitive attribute, respectively.

C. Fairness Strategy in Classifier Training
Stage

In Table 1, we explore the effectiveness of applying

GRL [17] in the classifier training stage, after finishing the

representation learning with SupCon and FSCL+. To this

end, we deploy an additional classifier for the sensitive at-

tribute and do not freeze the encoder and projection networks

in the second stage. As might be expected, GRL improves

the fairness of SupCon by sacrificing the classification accu-

racy. Meanwhile, it degrades EO as well as the classification

accuracy in ours. We speculate that it is because the fair rep-

resentation learned by FSCL+ becomes biased by re-training

the encoding networks with the cross entropy loss and GRL.

The similar results of EO and top-1 accuracy between Sup-
Con with GRL and FSCL+ with GRL support that the learned

representation is almost renewed in the classifier training

stage. In conclusion, the results show that applying the addi-

tional strategy for fairness in the classifier training stage is

not effective to our method.

D. Modification for Incomplete Supervised Set-
ting

To apply our method to the environment where target

class labels are not provided, we introduce FSCL†, which

a modified version of FSCL. We set a positive sample to

another patch from the same image with an anchor and

negative samples to Zig and Ztg . It is formulated as follows.

FSCL† = −
∑
zi∈Z

log
exp(zi · zp/τ)∑

z∗
f∈Z∗

f (i)
exp(zi · z∗f/τ)

, (20)

where Z∗
f (i) = {z∗f ∈ Z|ŝ∗f = ŝi}. Except for the loss

function, the overall structure is the same as the original.

(a) SupCon (b) FSCL+

Target: a=0
Sensitive: m=0

Target: a=0
Sensitive: m=1

Target: a=1
Sensitive: m=0

Target: a=1
Sensitive: m=1

Figure 2. t-SNE visualizations with random intialization.

E. Details of t-SNE Visualization
For the t-SNE [23] visualization, we exploit the models

pre-trained on CelebA dataset [14] for 100 epochs. Then

we obtain 50 random samples (i.e., representation) per data

group with the pre-trained models. Before applying the t-

SNE algorithm, we reduce the dimensionality of the samples

using PCA reduction. We tune the hyperparameters in the

scikit-learn implementation as follows.

• Perplexity: from 10 to 40 by 1

• Learning rate: 10 or 100

• Iteration= 100, 1000, or 10000

We set the perplexity, learning rate, and iterations 10, 10,

and 10000 respectively, but in all the cases, we note that

representation learned by FSCL+ is more agnostic to the

sensitive attribute than that learned by SupCon. Furthermore,

we provide t-SNE plots without PCA reduction in Figure 2

since it considerably affects the structure of representations.

Figure 3. Classification results on UTK Face dataset. We set gen-
der and age to the target class and sensitive attribute, respectively.

It shows trends of classification accuracy and equalized odds (EO)

at different α.

F. Further Experiments on UTK Face
In Figure 3, we provide experimental results on UTK Face

with the other sensitive attribute, age. It shows that FSCL+
maintain the fairest EO and the best top-1 accuracy at all α.



Figure 4. Experimental results in figure form on CelebA dataset. It shows the trade-off performances between ACC. and EO more clearly.

The upper left corner of the plots corresponds to the optimal trade-off performance.

Attributes
CE [7] GRL [17] LNL [13] FD-VAE [16] MFD [11] SupCon [12] FSCL FSCL+

EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

T=a / S=m 27.8±0.2 79.6±0.5 24.9±0.3 77.2±0.5 21.8±0.4 79.9±0.5 15.1±0.1 76.9±0.0 7.4±0.3 78.0±0.3 30.5±1.3 80.5±0.7 11.5±0.3 79.1±0.4 6.5±0.4 79.1±0.4

T=a / S=y 16.8±0.3 79.8±0.4 14.7±0.4 74.6±0.4 13.7±0.3 74.3±0.4 14.8±0.2 77.5±0.1 14.9±0.4 80.0±0.3 21.7±1.0 80.1±0.8 13.0±0.6 79.1±0.5 12.4±0.5 79.1±0.5

T=b / S=m 17.6±0.3 84.0±0.3 14.0±0.3 82.5±0.5 10.7±0.2 82.3±0.4 11.2±0.1 81.6±0.3 7.3±0.2 78.0±0.3 20.7±0.5 84.6±0.6 7.0±0.4 82.1±0.3 4.7±0.5 82.9±0.4

T=b / S=y 14.7±0.1 84.5±0.3 10.0±0.2 83.3±0.5 6.8±0.3 82.3±0.5 6.7±0.2 81.7±0.0 5.4±0.1 78.0±0.2 16.9±0.9 84.4±0.8 6.4±0.4 83.8±0.4 4.8±0.3 84.1±0.5

T=e / S=m 15.0±0.3 83.9±0.2 6.7±0.4 81.9±0.6 5.0±0.3 81.6±0.3 5.7±0.0 82.6±0.1 8.7±0.3 79.0±0.4 20.8±1.1 84.3±0.5 3.8±0.3 82.7±0.3 3.0±0.4 83.4±0.6

T=e / S=y 12.7±0.2 83.8±0.3 5.9±0.4 82.3±0.4 3.3±0.4 80.3±0.6 6.2±0.1 84.0±0.2 5.2±0.2 78.0±0.2 10.8±1.0 84.0±0.7 1.8±0.3 82.0±0.4 1.6±0.3 83.5±0.3

T=a & o / S=m 30.0±0.2 73.9±0.5 17.8±0.2 73.1±0.5 16.7±0.4 72.9±0.5 18.2±0.1 73.4±0.1 8.7±0.4 74.0±0.3 22.8±0.7 74.0±0.5 8.1±0.3 74.1±0.3 3.6±0.3 74.8±0.4

T=b & e / S=m 12.9±0.2 72.6±0.4 9.4±0.3 71.4±0.4 7.4±0.2 70.8±0.5 8.2±0.1 70.2±0.2 9.0±0.1 70.0±0.1 12.5±0.8 72.7±0.9 6.8±0.4 71.1 ±0.2 2.5±0.6 70.8±0.5

T=a / S=m & y 31.3±0.3 79.5±0.4 22.9±0.4 78.6±0.5 20.7±0.3 77.7±0.5 19.9±0.0 78.0±0.1 19.4±0.2 76.1±0.3 24.4±1.3 81.7±0.7 19.9±0.5 79.4±0.3 17.0±0.5 77.2±0.5

Table 2. Classification results on CelebA. We further specify the standard deviation in this table.

Although FD-VAE [16] achieves similar EO with FSCL, its

accuracy is significantly inferior to ours. It indicates that ours

highly outperform it in terms of the trade-off performance

between fairness and accuracy.

G. Additional Experimental Results on CelebA

To clearly show the trade-off performances between clas-

sification accuracy and fairness, we plot the experimental

results on CelebA in Figure 4. FSCL+ achieves the best

trade-off performances in all the results. Furthermore, we

supplement the experimental results by reporting standard

deviation in Table 2.

H. Dataset Composition

H.1. CelebA and UTK Face

In CelebA [14], we conduct experiments in terms of a

variety of target and sensitive attribute pairs. Table 3 shows

the specific composition of the training set in all the settings.

In UTK Face [27], we involve 10,000, 2,400, and 2,400 data

in the training, validation, and test sets, respectively. We pro-

vide the various compositions of the training set according

to α in Table 4.

H.2. Dogs and Cats

Similar to UTK Face, we leverage 3,425 black cat and

white dog images, and 685 white cat and black dog images

for training. The test set includes 2,400 images which are



CelebA

a=0 a=1 b=0 b=1 e=0 e=1

m=0 29,920 64,589 m=0 84,954 9,555 m=0 84,963 9,546

m=1 49,247 19,014 m=1 39,475 28,786 m=1 44,527 23,734

a=0 a=1 b=0 b=1 e=0 e=1

y=0 30,618 5,364 m=0 19,164 16,818 m=0 22,146 13,836

y=1 48,549 78,239 m=1 105,265 21,523 m=1 107,344 19,444

a=0 a=1 m=0 m=1 m=0 m=1

m=0, y=0 7,522 3,645 a=0, o=0 13,995 27,966 b=0, e=0 78,613 30,481

m=1, y=0 23,096 1,719 a=1, o=0 30,943 11,380 b=1, e=0 6,350 14,046

m=0, y=1 22,398 60,944 a=0, o=1 15,925 21,281 b=0, e=1 6,341 8,994

m=1, y=1 26,151 17,295 a=1, o=1 33,646 7,634 b=1, e=1 3,205 14,740

Table 3. Composition of the training set of CelebA. a, b, e, o, m, and y denote attractiveness, bignose, bags-under-eyes, mouth-slightly-open,

male, and young, respectively.

UTK Face

α = 2 / α = 3 / α = 4
Ethinicity Age

Caucasian Others More than 35 Others

Female 1,666 / 1,250 / 1,000 3,334 / 3,750 / 4,000 1,666 / 1,250 / 1,000 3,334 / 3,750 / 4,000

Male 3,334 / 3,750 / 4,000 1,666 / 1,250 / 1,000 3,334 / 3,750 / 4,000 1,666 / 1,250 / 1,000

Table 4. Composition of the training set of UTK Face. α denotes the intensities of data imbalance.

completely balanced. We note that it is different from the

original setting in [13]. In the study, the target attribute and

bias are completely correlated in the training set. For in-

stance, cats are always black and dogs are always white.

Although they solved the task by utilizing the pixel-level of

bias labels (i.e., RGB values of each pixel), it is an almost

unsolvable problem with only the image-level of labels since

the target attribute and bias labels are always the same at the

image-level. Therefore, we designed the task more reason-

able to validate fairness methods which mostly exploit the

image-level of labels.

H.3. Discussion on License and Data Collection

Both CelebA [14] and UTK Face [27] have a non-standard

license (i.e, Custom (non-commericial)), but the creators

clarify the datasets are available for non-commercial research

purposes only.

CelebA consists of the images collected from Celeb-Faces

dataset [21] and attribute labels. According to [21], the im-

ages are collected by searching names of celebrities on the

web. Also in UTK Face, the creators combine the images

from CACD [3] and Morph [10] datasets with the images

crawled in Bing and Google search engines. In both CACD

and Morph, the images are gathered by searching on the

web.

I. Implementation Details

I.1. Structure of Comparable Models

Cross-Entropy [7] , GRL [17], LNL [13]: The models uti-

lize ResNet-18 [7] for backbone networks and a MLP with

one hidden layer for classifiers. The dimensions of represen-

tation are the same as ours. GRL and LNL are reproduced

based on [13, 17], and the hyperparameter to determine a

weight for the reversed gradient is searched in the range from

0.01 to 0.1 in each experiment. For LNL, hyperparameter λ
for regularization loss is searched in the range from 0.01 to

0.1 in each experiment. For all the models, we train them in

an end-to-end manner for 100 epochs.

FD-VAE [16]: We build the model with the same struc-

ture as the original paper [16] without the encoder network.

For a fair comparison, we substitute the encoder network

to ResNet-18 and obtain better reproduction performances.

Following the paper, we separate each latent space to have

the same dimensions to each other and set hyperparameter β
to 1. The other hyperparameters are found by grid searching

and set to α = 1, γ = 5, and λ = 1 for all the experiments.

For representation learning, we train the encoder networks

for 100 epochs. After that, we train the classifiers for down-

stream tasks for 10 epochs.

MFD [11]: We implement the model with source code



released by the authors. The teacher and student models both

leverage ResNet-18 for backbone networks and a MLP with

one hidden layer for a classifier. Following the original paper,

we train the models for 50 epochs and set hyperparameter λ
to 7 and 5 for CelebA and UTK Face, respectively. For Dogs

and Cats, λ is determined as 7 through grid searching.

SupCon [12], SimCLR [4], FSCL (ours): We implement

SupCon and SimCLR with source code released by the au-

thors of [12], and FSCL is also based on the code (which is

licensed under the terms of the MIT license). The models

use ResNet-18 [7] for the encoder network and a MLP with

two hidden layers for the projection network, which have

256 hidden nodes.

I.2. Augmentation Strategy and Experimental
Setup

For the models based on contrastive loss, we augment

two patches per image. Except for this, we use the same

augmentation strategy [4] for all the models. Specifically,

we sequentially and randomly apply cropping and resizing,

horizontal flipping, color jittering, and gray scaling.

For all the models, we set the identical environments of

SGD optimizer with momentum [18], batch sizes of 128,

and learning rate of 0.1. All the experiments are based on the

PyTorch library and are conducted in a Linux environment

with 4 NVIDIA Titan Xp GPUs with 12GB of memory.

Method Regularization EO (↓) Acc. (↑)

GDRO

Standard 21.3±1.0 76.3±0.2

Early Stopping 4.0 ±0.1 74.7±0.1

Strong L2 (lr=0.1) 8.7 ±2.6 76.3±0.1

Strong L2 & Group adjustments (C=5) 8.0 ±2.0 77.1 ±0.2

FSCL+ Standard 6.5±0.4 79.1±0.1

Table 5. Comparison with GDRO on CelebA. We set attractive-
ness and male to the target class and sensitive attribute, respectively.

J. Comparison with GDRO
GDRO [19] is one of the state-of-the-art methods to min-

imize the performance gaps between data groups and has

a goal similar to our group-wise normalization. Thus, we

report comparison results with GDRO in Table 5. Following

the original paper, we search for the best C in the range of

[0, 5]. The results show that ours achieves a better trade-off

performance than GDRO.

K. Two kinds of Supervised Contrastive Losses
In this section, we summarize two kinds of supervised

contrastive losses (i.e., Lsup
out and Lsup

in ) proposed in [12]

and why we leverage Lsup
out as our baseline. Unlike Lsup

out (i.e.,
LSup in the main paper), Lsup

in places the summation over

positive samples and the normalization factor inside the log

as follows.

LSup
in = −

∑
zi∈Z

log

(
1

|Zp(i)|
∑

zp∈Zp(i)

φp∑
za∈Za(i)

φa

)
.

(21)

In the loss, the normalization factor works as a constant

(i.e., −∑
zi∈Z log 1

|Zp(i)| ), so it cannot normalize the imbal-

ance in the positive samples. As the result, Lsup
in is more

vulnerable to the data bias and shows inferior classification

performances to Lsup
out . For these reasons, we utilize the latter

as our baseline.

L. Discussion on Limitations
In this section, we discuss two limitations of our study.

The first one is that our work is confined to the image clas-

sification task. We discuss it by explaining why we cover

the task in this paper. One reason is that the superior per-

formance of our baselines (i.e., SupCon and SimCLR) has

been experimentally validated in the image classification

task [4, 12]. Therefore, through the task, we can make a fair

comparison with the models and convincingly demonstrate

our improvement over them. The other reason is that image

classification is a fundamental and common task not only

in contrastive representation learning [4, 12, 22, 26] but in

fairness studies in the field of computer vision [5, 16, 20, 25].

Although fair visual representation can be exploited in other

tasks, such as object recognition [24], image-to-image trans-

lation [8, 9], face recognition [2, 6], and object detection [1],

each of them requires a suitable notion of fairness [1, 24]

and specialized architectures [6, 8, 9]. Therefore, to achieve

the best performance on the tasks, we also need to modify

the proposed loss more appropriately for them. We leave the

extension of FSCL to broader tasks for future work.

Second, our method essentially requires sensitive attribute

labels to improve fairness. Even though supervision of the

sensitive attribute labels is common in the literature on fair

classification [5, 15, 16, 20], sometimes we cannot access the

labels and it is laborious and expensive to annotate them.

Although we show that our method can reduce such costs

by effectively improving fairness using only a few labels,

it cannot be utilized in the complete absence of the labels.

Therefore, future works that develop a fair contrastive loss

free of the sensitive attribute labels would make a significant

contribution to the research community. We expect our study

to be a bridgehead for them.
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