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In this supplementary material, we provide additional
experimental results and their detailed settings.

1. Experimental Details
In this section, we clarify the experimental settings for

training models, latency evaluation, and model architectures
in detail. Each experiment has been conducted with a fixed
random seed for the reproducibility.
Training details. For 3D semantic segmentation, we use
the same training configuration except the batch size and
training iterations for both ScanNet [3] and S3DIS [1]. We
use the SGD optimizer with momentum and weight decay as
0.9 and 0.0001, respectively. The learning rate is scheduled
by the linear warm-up and cosine annealing policy from the
initial learning rate 0.1 to the final learning rate 0. We train
models with batch size 8 both for ScanNet and S3DIS. We
train models with 100k and 40k iterations for ScanNet and
S3DIS, respectively.
Latency evaluation. We describe the detailed setups that
have been used during the inference time evaluation on Ta-
ble 2 of the main paper. We measure the latency of each
model with batch size 1 under the following environments:

1. CUDA version: 11.0

2. cuDNN version: 8.2.1

3. PyTorch version: 1.7.1

4. MinkowskiEngine version: 0.5.4

5. GPU: single NVIDIA Geforce RTX 3090

6. CPU: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz

Network architectures. Figure A1 illustrates detailed model
designs of MinkowskiNet42 [2] and our Fast Point Trans-
former. To set the total parameter numbers to be similar, we
adjust the feature dimensions as Hu et al. [4] does, result-
ing in similar parameter numbers; 37.9M for both models.
For small models used in both Table 4 of the main paper
and Table A4 of this supplementary material, we modify the

Table A1. Color reconstruction results. We compare RGB color
reconstruction quality in PSNR with the same backbone architec-
ture as MinkowskiNet [2] except the vox/devoxelization modules.
We conduct the experiments on ScanNet [3] validation set (10cm).

Method PSNR (↑)

Conventional [2] 21.76
Our centroid-aware 23.03

Table A2. Comparison of robustness to voxel size. We compare
mIoU scores of MinkowskiNet42† and Fast Point Transformer
using a larger voxel size (5cm) for inference than the voxel size
(4cm) used for training on S3DIS [1] dataset. Note that both models
are trained with voxel size as 4cm.

Method mIoU (4cm) mIoU (5cm)

MinkowskiNet42† 67.2 64.0 (↓ 3.2)
Fast Point Transformer 68.7 67.5 (↓ 1.2)

number of residual blocks as the official code of Minkowsk-
iNet [2] does. Table A3 provides the exact number of resid-
ual blocks.

2. Analysis on Centroid-aware Voxelization

Color reconstruction. We conduct a experiment to evaluate
the effeciveness of our centroid-aware voxelization. We
compare ours and the conventional voxelization [2] with the
same setting from Table 5 of the main paper on ScanNet [3]
validation set. We reconstruct colors (RGB) of input point
clouds with MinkowskiNet [2], optimized by l2-difference
between input colors and reconstructed colors. As shown
in Table A1, ours achieves a higher PSNR by 1.27 than the
conventional one, showing the effectiveness of the centroid-
aware property to mitigate quantization artifact.
Robustness to voxel size. We evaluate the robustness of
both MinkowskiNet42† and Fast Point Transformer to the
voxel size for inference by using a larger voxel size than
one used for training. For both models trained with voxel
size 4cm, we measure the performance drop of each method
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Figure A1. Network architectures. (Top) MinkowskiNet42 [2] and (Bottom) our Fast Point Transformer. LSA denotes the proposed
lightweight self-attention. Note that both models have the same number of learnable parameters.

Table A3. The number of residual blocks. We apply the same con-
figuration for both MinkowskiNet [2] and Fast Point Transformer.
S1,· · · , S16 denote the tensor stride in the feature map hierarchy.

Method
Encoder Decoder

S2 S4 S8 S16 S8 S4 S2 S1

baseline 2 3 4 6 2 2 2 2
small 2 2 2 2 2 2 2 2
smaller 1 1 1 1 1 1 1 1

when it use voxel size 5cm for inference. The results show
that the Fast Point Transformer is more robust to inference
voxel size than MinkowskiNet42† as shown in Table A2.

3. Additional Experimental Results

In this section, we show further experimental results about
the effect of model size on its performance, the proposed
decomposition of positional encodings, and the class-wise
IoU scores of both MinkowskiNet42† and our Fast Point
Transformer on S3DIS [1] Area 5 test dataset.
mIoU vs. model size. We provide additional results with
voxel size 2cm in Table A4. Since Fast Point Transformer
shows its robustness to the number of parameters with voxel
size as 5cm and 10cm, Fast Point Transformer (smaller)
still achieves 70.5% of mIoU score while MinkowskiNet
(smaller) only shows 68.6% with voxel size as 2cm. Inter-
estingly, both MinkowskiNet and Fast Point Transformer
show the largest performance drop with voxel size 2cm. We
hypothesize that this is because the reduction of residual
blocks reduces the receptive field, and the reduced receptive
field is not sufficient for the model to recognize a 3D scene.

Table A4. mIoU vs. model size.

Method
# Param. (M) mIoU (%)

Rel. (%) ∆

Voxel size: 10cm

MinkowskiNet42† 37.9 ±0.0 60.5±0.2 ±0.0
MinkowskiNet (small) 21.7 ↓ 42.7 59.9±0.6 ↓ 0.6
MinkowskiNet (smaller) 11.6 ↓ 69.4 58.2±0.9 ↓ 2.3

FastPointTrans. (ours) 37.9 ±0.0 65.9±0.6 ±0.0
FastPointTrans. (small) 20.2 ↓ 46.7 66.0±0.3 ↑ 0.1
FastPointTrans. (smaller) 10.8 ↓ 71.5 65.7±0.1 ↓ 0.2

Voxel size: 5cm

MinkowskiNet42† 37.9 ±0.0 66.7±0.3 ±0.0
MinkowskiNet (small) 21.7 ↓ 42.7 66.0±0.1 ↓ 0.7
MinkowskiNet (smaller) 11.6 ↓ 69.4 64.2±0.4 ↓ 2.5

FastPointTrans. (ours) 37.9 ±0.0 70.0±0.1 ±0.0
FastPointTrans. (small) 20.2 ↓ 46.7 70.3±0.2 ↑ 0.3
FastPointTrans. (smaller) 10.8 ↓ 71.5 69.7±0.2 ↓ 0.3

Voxel size: 2cm

MinkowskiNet42† 37.9 ±0.0 71.9±0.2 ±0.0
MinkowskiNet (small) 21.7 ↓ 42.7 71.2±0.2 ↓ 0.7
MinkowskiNet (smaller) 11.6 ↓ 69.4 68.6±0.6 ↓ 3.3

FastPointTrans. (ours) 37.9 ±0.0 72.1±0.3 ±0.0
FastPointTrans. (small) 20.2 ↓ 46.7 71.3±0.1 ↓ 0.8
FastPointTrans. (smaller) 10.8 ↓ 71.5 70.5±0.1 ↓ 1.6

Decomposition of positional encodings. We quantita-
tively measure how much memory the proposed decompo-
sition of positional encodings can reduce. We measure the
peak memory usage of both models with and without the
decomposition as varying the local window size for neighbor



Table A5. Effect of the decomposition on memory usage. k
denotes the local window size which defines the maximum number
of neighbor points, K := k3, within the kernel volume. We conduct
the experiments on ScanNet [3] validation set (2cm).

k
Peak Memory Usage (GB)

Decomposition (ours) Exact - parallel

3 3.613 9.519
5 3.892 23.245
7 4.494 Out of Memory

Table A6. Sequential computation vs. Decomposition. We
conduct the experiments on ScanNet [3] validation set (2cm).

Method Memory (GB) Latency (sec) mIoU (%)

Exact - parallel 9.52 0.15 72.1
Exact - sequential 3.40 0.48 72.1
Decomposition 3.61 0.17 72.0

Table A7. Voxel-based vs. Hybrid vs. Fast Point Transformer.
We compare MinkowskiNet42 [2], SPVCNN [8] and our Fast Point
Transfomer on ScanNet [3] validation set with voxel size 10cm.

Method Memory (GB) Latency (sec) mIoU (%)

MinkowskiNet42† 1.93 0.04 60.4
SPVCNN 3.62 0.07 62.8
Ours 2.73 0.08 65.3

points on ScanNet [3]. We keep the voxel size as 2cm for the
all measurements. As shown in Table A5, the models with
the proposed decomposition which has the space complexity
of O(ID +KD) show an almost constant memory usage
since the number of voxel centroids I is much bigger than
the number of neighbor pointsK. However, the models with-
out the decomposition which has the space complexity of
O(IKD) show a growing usage of memory. Moreover, the
model with local window size 7 raises the out-of-memory
error in single NVIDIA Geforce RTX 3090 GPU whose
VRAM capacity is 24GB. This results show the memory-
efficient property of the proposed lightweight self-attention
(LSA). Furthermore, Table A6 shows that the LSA layer
saves memory consumption and preserves fast inference
time. The mIoU is almost identical to the exact approaches,
indicating the effectiveness of the decomposition.
Comparison with hybrid methods. For a fair comparison,
we re-implement SPVCNN [8] with MinkowskiEngine-0.5.4
since MinkowskiEngine-0.5.4 is faster than TorchSparse. As
shown in Table A7, Fast Point Transformer outperforms
SPVCNN by 2.5 mIoU on ScanNet [3] validation set with
voxel size 10cm, consuming a less GPU memory.
Detailed experimental results on S3DIS [1]. We report
the class-wise IoU scores of both MinkowskiNet42† and the
proposed Fast Point Transformer on S3DIS [1] Area 5 in Ta-
ble A9. We report the performance of the best model among
three different experiments with the same training configura-

tion except random seed numbers both for MinkowskiNet42†

and Fast Point Transformer. There is a large gap in the la-
tency between point-based methods [5, 7, 9–12] and voxel
hashing-based methods [2] including our Fast Point Trans-
former as shown in Table A9. Specifically, Fast Point Trans-
former (4cm) outperforms MinkowskiNet42† (4cm) with
rotation average by 0.4 mIoU with a 4.7 times faster speed.

4. Time Complexity Analysis
In this section, we analyze the time complexity of neigh-

bor search used in both voxel hashing-based methods [2]
including ours and point-based methods [9–12]. We first
recap the reported time complexity as shown in Table A8.

MinkowskiNet [2] and Fast Point Transformer require
the same process for neighbor search since both methods
benefit from voxel hashing. We analyze preparation and
inference time complexity on Alg. A1 and Alg. A2, respec-
tively. We denote ours as the representative method.

KPConv [9] constructs a k-d tree before inference. With
the official code of KPConv, we analyze both preparation
and inference time in Alg. A3 and Alg. A4, respectively.

PointWeb [11] uses a brute-force algorithm to search the
k nearest neighbors. We analyze the time complexity of the
brute-force algorithm in Alg. A5.

PAConv [10] and Point Transformer [12] do not require
preparation steps for neighbor search. Thus, we set the
preparation time to constant time. For analyzing inference
time, we have followed the official implementation. As both
methods use the same algorithm for neighbor search, we
denote PAConv as the representative method in Alg. A6.

5. Qualitative Results
In this section, we show further qualitative results of con-

sistency scores, 3D semantic segmentation results, and 3D
object detection on ScanNet [3]. Figure A2 shows the point-
wise consistency scores of MinkowskiNet42† and our Fast
Point Transformer. In addition to this consistency, Fast Point
Transformer predicts more accurate 3D semantic labels (Fig-
ure A3) and 3D bounding boxes (Figure A4) qualitatively.



Table A8. Time complexity analysis. We denote N as the number
of dataset points, M as the number of query points (or voxel cen-
troids), and K as the number of neighbors to search. Both M and
N are much larger than K in a large-scale point cloud.

Methods
Neighbor Search

Preparation Inference

PointNet [7] ✗ ✗
SPGraph [5] ✗ ✗
PointWeb [11] O(1) O(MNK)
KPConv deform [9] O(N logN) O(KM logN)
PAConv [10] O(1) O(MN logK)
PointTransformer [12] O(1) O(MN logK)
MinkowskiNet [2] O(N) O(M)
FastPointTransformer (ours) O(N) O(M)

Algorithm A1 (Ours) Hash Table Construction: O(N)

Number of training points: N
An empty hash table: h
for point = 1, 2, · · · , N do

Insert(h, point) // O(1)
end for

Algorithm A2 (Ours) Inference: O(M)

Number of query points: M
A constructed hash table: h̄
for query = 1, 2, · · · , M do

Lookup(h̄, query) // O(1)
end for

Algorithm A3 (KPConv) Tree Construction: O(N logN)

Number of training points: N
An empty tree: T
for point = 1, 2, · · · , N do

Insert(T , point) // O(logN)
end for

Algorithm A4 (KPConv) Inference: O(KM logN)

Number of training points: N
Number of query points: M
Number of neighbors to search: K
Constructed k-d tree: T̄
k-th nearest neighbors dictionary: S = {}
for query = 1, 2, · · · , M do

arr = []
for i = 1, 2, · · · , K do

point = SearchClosest(T̄ , query) // O(logN)
T̄ = Pop(T̄ , point) // O(logN)
arr.append(point)

end for
S[query] = arr

end for

Algorithm A5 (PointWeb) Inference: O(MNK)

Number of training points: N
Number of query points: M
Number of neighbors to search: K
for query = 1, 2, · · · , M do

Best score buffer: b[K]
for point = 1, 2, · · · , N do

for k = 1, 2, · · · , K do
if d(query, point) < b[k] then

for i = K − 1, · · · , k + 1 do
b[i] = b[i− 1]

end for
b[k] = d(query, point)

end if
end for

end for
end for

Algorithm A6 (PAConv) Inference: O(MN logK)

Number of training points: N
Number of query points: M
Number of neighbors to search: K
for query = 1, 2, · · · , M do

H = InitHeap() // O(K)
MinD = 1010

MinIdx = 0
for point = 1, 2, · · · , N do

if d(point, query) < MinD then
Reheap(H , MinD, MinIdx, K) // O(logK)
MinD = d(point, query)
MinIdx = point

end if
end for
Heapsort(H , MinIdx, MinD, K) // O(K logK)

end for



Table A9. Detailed experimental results on S3DIS [1] Area 5 test. Note that the latency of each method denotes the per-scene
wall-time latency normalized by that of Fast Point Transformer. Numbers except the latency means percentage values (%). We denote
MinkowskiNet42† and Fast Point Transformer as MinkNet42† and FastPointTrans., respectively.

Method Latency mAcc mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [7] 129.71 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SPGraph [5] 130.57 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PointWeb [11] 83.00 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
KPConv deform [9] 751.07 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PAConv [10] 200.93 73.0 66.6 94.6 98.6 82.4 0.0 26.4 58.0 60.0 80.4 89.7 69.8 74.3 73.5 57.7
PointTransformer [12] 129.07 76.5 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3

MinkNet42† (5cm) 0.50 73.3 66.0 93.2 97.0 84.0 0.0 25.7 63.9 66.4 76.9 88.9 58.4 70.1 78.0 54.9
+ rotation average 4.07 73.5 67.1 93.9 97.1 85.2 0.1 28.3 64.5 70.3 76.8 90.0 57.2 70.9 81.1 56.7

FastPointTrans. (5cm) 0.93 74.7 67.5 91.5 97.4 86.0 0.2 40.4 60.8 66.7 79.6 87.7 58.6 73.7 77.2 57.3
+ rotation average 7.50 75.5 68.5 90.0 96.0 86.2 0.0 47.1 61.3 69.7 81.1 88.2 60.9 74.2 78.2 57.3

MinkNet42† (4cm) 0.57 73.6 67.2 93.1 97.6 84.9 0.0 35.9 57.5 74.5 80.0 88.2 55.6 72.9 77.1 56.9
+ rotation average 4.71 74.3 68.3 93.8 97.6 85.9 0.0 38.9 58.8 75.3 81.1 88.8 53.3 74.6 80.0 59.8

FastPointTrans. (4cm) 1.00 77.1 68.7 93.8 97.8 85.5 0.6 49.9 60.5 72.9 80.2 88.7 56.0 71.4 78.0 58.1
+ rotation average 8.07 77.9 70.3 94.2 98.0 86.0 0.2 53.8 61.2 77.3 81.3 89.4 60.1 72.8 80.4 58.9

Figure A2. Qualitative results of consistency scores (CScore) on ScanNet [2]. (Left) Input point cloud, (Middle) CScore of
MinkowskiNet42†, and (Right) CScore of the proposed Fast Point Transformer. Both models are trained with voxel size as 10cm.



Figure A3. Qualitative results of 3D semantic segmentation on ScanNet [2]. (First column) Input point cloud, (Second column) Predicted
semantic labels by MinkowskiNet42†, (Third column) Predicted semantic labels by the proposed Fast Point Transformer, and (Fourth
column) Ground truth. Both models are trained with voxel size as 10cm.

Figure A4. Qualitative results of 3D object detection on ScanNet [2]. (Left) Predicted bounding boxes by VoteNet [6] with MinkowskiNet
backbone, (Middle) Predicted bounding boxes by VoteNet [6] with the proposed Fast Point Transformer backbone, and (Right) Ground truth.



6. Notations

P in = {(pn, in)} Input point cloud

pn ∈ R3 The n-th point coordinate

in ∈ RDin The n-th input point feature

Pout = {(pn,on)} Output point cloud

on ∈ RDout The n-th point feature

V = {(vi, fi, ci)} Input voxels with centroids

vi ∈ R3 The i-th voxel center coordinate

fi ∈ RDin The i-th input voxel feature

ci ∈ R3 The i-th voxel centroid coordinate

M(i) A set of point indices within the i-th voxel

Ω A permutation-invariant operator (e.g., average)

V ′ = {(vi, f
′
i , ci)} Output voxels with centroids

f ′i ∈ RDout The i-th output voxel feature

N (i) A set of neighbor voxel indices the i-th voxel

en The centroid-to-point positional encoding

δenc An encoding layer used in centroid-to-point positional encoding

on The n-th output point feature of the output point cloud Pout

⊕ A vector concatenation operation

a(·) An attention operation

ϕ A query projection layer in attention operations

ψ A value projection layer in attention operations

gi A centroid-aware voxel feature

δrel A discretized positional encoding layer

δabs A continuous positional encoding layer
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