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In this document, we include supplementary materials
for ProVico. We first describe methodological details on
ProViCo (Sec. A, Sec. B) and provide implementation de-
tails (Sec. C) for downstream tasks. The additional ex-
perimental results (Sec. D), including ablation studies and
qualitative results, are also presented to complement the
main paper. Finally, observations and intuitive analyses to
leverage the uncertainty for the future work are introduced
in Sec. E. For all experiments in this document, we use
R(2+1)D [12] as the backbone network.

A. Uncertainty Computation on ProViCo

In ProViCo, the whole video distribution is esimated as
a Mixture of Gaussians (MoG) with N clip embeddings.
Moreover, the variance predicted for each video represents
the inherent uncertainty for the data. To compute the uncer-
tainty of videos, we briefly provide the computations of the
mean and variance of the whole video distribution from the
clip distribution. Given a set of N clips {cn}Nn=1 sampled
from a video V , let fcn(z) be a probability density function
(PDF) for the n-th clip with a mean vector µn ∈ RD and a
diagonal components of covariance matrix σ2

n ∈ RD. The
PDF of the MoG is represented by the averaged PDF of N
embeddings:

fV(z) =
1

N

∑
n

fcn(z). (1)

Then, the average vector µV for the MoG is computed by
the averaged mean vectors from clips:

µV =

∫
zfV(z)dz

=
1

N

∑
n

∫
zfcn(z)dz

=
1

N

∑
n

µn.

(2)
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The variance σ2
V for the MoG is derived as follows:

σ2
V =

∫
z2fV(z)dz − µ2

V
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V
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∑
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(σ2
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n)− µ2
V

=
1

N
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(σ2
n + µ2

n)− (
1

N
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µn)
2.

(3)

Finally, the geometric mean of the variance σ2
V is used as

the uncertainty of V .

B. Probabilistic Distance
B.1. Other Distance Metrics

In the main paper, Bhattacharyya distance is used to
measure the probabilistic distance between two normal dis-
tributions. We extend the probabilistic distance to various
formulations and analyze them in terms of positive and neg-
ative mining. To simplify each distance, we first define Eu-
clidean distance1 as d(·) between two sampled embeddings:

d(z(k)p , z(k
′)

q ) = (z(k)p −z(k
′)

q )>(z(k)p −z(k
′)

q ), (4)

where z(k)p and z
(k′)
q are sampled from different distribu-

tions p = N (µp, σ
2
p) and q = N (µq, σ

2
q ), respectively.

Euclidean distance is used to the deterministic counter-
part to the probabilistic distance. The distance between two
probability distributions are computed via Monte-Carlo es-
timation:

ED(p, q) =
1

K2

∑
k

∑
k′

d(z(k)p , z(k
′)

q ). (5)

Kullback-Leibler (KL) divergence [2] measures the rel-
ative entropy of given two probability distributions as fol-

1Strictly the square of Euclidean distance.
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lows:

KL(p, q) =

∫
log

p

q
dp

=
1

2
[log

σ2
q

σ2
p

+
σ2
p

σ2
q

+
ED(p, q)

σ2
q

].

(6)

To enforce a distribution-wise symmetric measure, we em-
ploy Jensen-Shannon (JS) divergence [6] instead of di-
rectly using KL-divergence:

JS(p, q) =
1

2
[KL(p, q) +KL(q, p)]. (7)

Wasserstein distance measures the probability distance
of two distributions on a given metric space M . The 2-
Wasserstein distance between two Gaussian distributions is
defined as:

W (p, q)2 = ED(p, q) + σp − σ2
q . (8)

B.2. Comparison on Toy Experiment

Now we compare the mining capacity through the toy
experiment on 11 subclasses from UCF101 [11] dataset2.
We construct a batch by sampling 8 videos per class such
that the batch size is 88 and the number of hard positive
pairs (having the same class) is 308. Different from the
main text, we set threshold distance τ as the average value
of self-distances:

τ =
1

B

B∑
i=1

dist(Vi,Vi), (9)

whereB is batch size and dist(Vi,Vi) represents the average
distance between embedding pairs sampled from the video
distribution p(z|Vi). We compute the precision and recall at
every 20 epochs for the constructed positive pairs according
to the type of distance to estimate the mining capacity, as
shown in Fig. 1. At the beginning of training, high recall is
shown on the right side of Fig. 1 regardless of the distance
due to a large number of positive candidates, while the pre-
cision is significantly low, as shown on the left side of Fig. 1.
The comparison between Euclidean distance and the prob-
abilistic distances implies that Euclidean distance requires
sufficient training steps to eliminate false positives, showing
high recall and low precision compared to the probabilistic
distance. The results on the probabilistic distance show that
Bhattacharyya distance achieves constructing reliable posi-
tive pairs with a small number of epochs.

2The 11 classes (“ApplyEyeMakeup”, “Archery”, “BabyCrawl-
ing”, “BalanceBeam”, “BandMarching”, “BaseballPitch”, “Basketball”,
“BenchPress”, “Biking”, “GolfSwing”, and “SkyDiving”) are used for this
experiment.
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Figure 1. (Left) Distance versus precision and (Right) Distance
versus recall at every 20 epochs. Since we do not consider hard
positives at the first 30 epochs, the precision and recall are com-
puted from epoch 40. BD: Bhattacharyya distance, JS: Jensen-
Shannon divergence, WD: Wasserstein distance, and ED: Elidean
distance.

C. Implementation Details
C.1. Two-stage Training

In pretraining, our ProViCo trains the model in a two-
stage procedure for stable training following [3, 9]. At the
first 30 epochs, the model is trained without hard positive
mining such that the positive pairs are defined as

P = {(Vi,Vj) | i = j}. (10)

After initial training, the positive and negative pairs are se-
lected based on the probabilistic distance as described in
the main text. The two-stage training enables the model
to obtain more substantial initial parameters than randomly
initialized models and construct the confident training pairs.

C.2. Finetuning and Inference

Finetuning. After self-supervised pretraining, we finetune
the model on UCF101 [11] or HMDB51 [5] datasets for
action recognition. As same with the pretraining, we ran-
domly sample two 16-frame clips with the temporal stride
of 1 from each video and all frames are fixed to a size of
112 × 112 by random cropping. The backbone network
with an additional fully-connected (FC) layer are trained
for 200 epochs with a mini-batch size of 96 and the learn-
ing rate of 0.02. To predict the action class of a video V ,
the FC layer takes all embeddings {z(k)}Kk=1 sampled from
p(z|V) as inputs and outputs the sample-wise class prob-
abilities {y(k)}Kk=1 followed by a softmax function. We
apply cross-entropy loss between the averaged probability
score 1

K

∑
k y

(k) and the groundtruth to learn parameters.
Inference. For action recognition, we uniformly sample 10
clips for each video and apply center cropping for fixed size
of 112×112, following [9,13]. Specifically, the consecutive
two clips are used to estimate the video distribution, such
that five video distributions are estimated from 10 clips. We
sample K embeddings on each distribution and predict 5K
class probabilities. Therefore, the final prediction of each
video is the averaged probability of 5K embeddings. For



Number of clips (β = 10−4, K = 10, B = 40)
Parameter N 1 2 3 4
Acc. (%) 78.3 81.8 82.2 82.4
Batch size (β = 10−4, K = 10, N = 2)
Parameter B 24 48 72 96
Acc. (%) 79.9 82.1 84.5 86.1

Table 1. Ablation studies for the number of clips M and batch
size B. We report the action recognition performance evaluated
on UCF101 [11] dataset.

Mining
Recognition Retrieval

Acc. (%) R@1 R@5 R@10 R@20
7 84.2 61.2 75.5 84.0 88.7
3 86.1 64.7 78.5 87.9 91.1

Table 2. Ablation study for positive and negative mining. We
evaluate the action recognition and video retrieval performance on
the UCF101 [11] dataset.

video retrieval task, we basically follow the experimental
protocol in [7, 9] and use the pretrained model without any
additional training. Each video in the test split is taken as
a query and top-k nearest-neighbors are retrieved from the
training set. To this end, the match probability [1, 8] is em-
ployed to measure the similarity, and the retrieval perfor-
mance is evaluated by top-k R@k.

C.3. Code

More details of network architecture and implementa-
tion is described in Pytorch-based code supplementary files
(‘ProViCo.zip’). The whole code will be publicly released
after the review process.

D. Additional Results
In this section, we provide additional experimental re-

sults with ProViCo. The results include ablation studies,
3D visualization, and qualitative results for video retrieval.

D.1. Ablation Study

We provide additional ablation studies for the number of
clips N used during training, batch size B, effectiveness of
positive and negative mining, and the similarity metrics.
Number of clips and batch size. We report the action
recognition performance evaluated on UCF101 [11] dataset
corresponding to the number of input clips N used during
training in the first block of Tab. 1. With the limited GPU
memory, we set batch size to 40 for all results to eliminate
the effect from batch size. Since more sophisticated and
complicated distribution for the whole video can be esti-
mated by combining a larger number of clip distributions,
the performance is improved as N increases. However, the
results that two clips are sufficient to represent the whole
video distribution, showing competitive performance to the

Similarity Metric R@1 R@5 R@10 R@20
Cosine Similarity 63.1 77.0 86.3 89.8
Match Probability 64.7 78.5 87.9 91.1

Table 3. Ablation study for the similarity metric on video retrieval.
We evaluate video retrieval performance on UCF101 [11] dataset.

larger number of clips. In addition, we observe that batch
size has a more impact on the performance than the number
of clips as shown in the second block of Tab. 1. To con-
sider the trade-off in terms of the computational capacity
and the space complexity, we use two clips (N = 2) for
each video in the main experiments. This also provides fair
comparisons with previous methods [4, 10] under general
experimental settings.
Positive and negative mining. We ablate positive and neg-
ative mining to verify the effectiveness of the hard posi-
tive pairs by evaluating the action recognition and video re-
trieval performances on UCF101 [11] dataset. As shown in
Tab. 2, constructing the positive and negative pairs based
on the probabilistic distance obviously improves the perfor-
mance of downstream tasks, especially on video retrieval.
Similarity metric on video retrieval. We mainly use the
match probability [1, 8] as a similarity metric to retrieve
videos. To verify the performance on variants of the sim-
ilarity metric, we evaluate the video retrieval performance
in Tab. 3. For the cosine similarity, we use the mean vector
of each video to measure the similarity without embedding
sampling. The results show that the performance using the
match probability is better than the cosine similarity. On the
other hand, in terms of space complexity, the cosine simi-
larity and match probability require O(N) and O(K2N)
spaces, respectively. Therefore, we can alternatively use the
match probability to obtain more accurate retrieval perfor-
mance and the cosine similarity for the fast inference.

D.2. KL Regularization with 3D Visualization

To visually observe the learned representations and the
impact of the KL-divergence hyperparameter β, we con-
duct an additional toy experiment on 11 subclasses used in
Sec. B. Specifically, we slightly transform the architecture
of ProViCo to learn 3-dimensional embeddings. We use the
same architecture as the main experiments, but add two ad-
ditional projection layers that take gµ(vcn) and gσ(vcn) as
an input respectively to obtain 3-dimensional embeddings.
Note that we use all the videos from three train splits for 11
classes in this experiment. In Fig. 2, we visualize learned
embeddings on 3D space according to β. As analyzed in
Sec. 4.5 of the main text, embeddings becomes like points
at the small value (β = 10−6). On the contrary to this, an
increase in β leads to an increase in the variance of embed-
dings, such that embeddings approach to the unit Gaussian
at the large value (β = 10−2).
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Figure 2. Impact of the KL-divergence hyperparameter β. We visualize 3-dimensional embeddings learned with the different values of
β on 11 subclasses of UCF101 [11] dataset. Each class is viewed in color.
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Figure 3. Qualitative results for video retrieval. (Left) Input query videos, (Middle) top-3 nearest-neighbors retrieved by the model
trained without hard positives, and (Right) top-3 nearest-neighbors retrieved by the model trained with hard positives. The red box indicates
the wrong retrieval results.

D.3. Qualitative Results

In Fig. 3, we visualize video retrieval results obtained by
top-3 nearest-neighbors on the test split 1 of UCF101 [11]
dataset. The results show that the model trained with hard
positives more robust to the semantic instance discrimina-
tion than the model trained without any hard positives.

E. Extension with Uncertainty
As mentioned in Sec. 1 of the main text, our probabilistic

framework can make useful applications such as estimation
of difficulty or chance of failure on test data. In this sec-
tion, we study the uncertainty with corrupted test videos by
establishing two factors that increase the uncertainty of the
video: (1) the ambiguous content of the video, which is un-
related to the subject of the video, and (2) the empty content
of the video, which includes the meaningless background
frames.

E.1. Uncertainty on Mixed Clips

To make the content of the video uncertain, we gener-
ate clips by mixing frames from several videos. We depict
examples of generated mixed clips in Fig. 4. We divide the
uncertainty into five levels according to the number of video
clips used to generate mixed clips. For example, Fig. 4(c),

representing mixture level 3, composes a 16-frame clip by
mixing each of four consecutive frames sampled from four
videos. We measure the averaged uncertainty of videos
from three test splits on UCF101 [11] dataset according
to uncertainty levels. As shown on the left side in Fig. 6,
the uncertainty increases as the number of mixed videos in-
creases. Based on this result, the uncertainty predicted by
our method can be used to eliminate the ambiguous clip or
balance the weights between clips for reliable performance
on various downstream tasks.

E.2. Uncertainty on Masked Clips

To consider the case where the video contains back-
ground frames, we randomly remove frames of the clip and
insert random noise frames to removed positions. We di-
vide the background degree according to the removal ratio
ρ (i.e., ρ = 0, 0.2, 0.4, 0.6, 0.8), as shown in Fig. 5. The
results on the right side in Fig. 6 show the uncertainty ex-
ponentially increases as the background ratio increases. In
practice, untrimmed raw videos consist of sparse frames re-
lated to the subject of the video and the majority of mean-
ingless background frames. Our probabilistic approach with
the uncertainty estimation enables us to effectively exploit
the untrimmed videos by filtrating the ambiguous or mean-
ingless contents.



(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5

Figure 4. Generation of mixed (uncertain) clips. The uncertainty divided into five levels according to the number of videos used to
generate mixed clips.

(a) ρ = 0 (b) ρ = 0.2 (c) ρ = 0.4 (d) ρ = 0.6 (e) ρ = 0.8

Figure 5. Generation of masked (background) clips. The frames in the original clip are replaced by noise frames according to the
removal ratio ρ.
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Figure 6. (Left) Mix level versus uncertainty and (Right) Mask
level versus uncertainty. We measure the uncertainty of videos
on three test splits of UCF101 [11] dataset according to each cor-
rupted level.

References
[1] Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio de

Rezende, Yannis Kalantidis, and Diane Larlus. Probabilis-
tic embeddings for cross-modal retrieval. In CVPR, 2021.
3

[2] Thomas M. Cover and Joy A. Thomas. Elements of informa-
tion theory. Wiley, 2006. 1

[3] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-
supervised co-training for video representation learning. In
NIPS, 2020. 2

[4] Simon Jenni and Hailin Jin. Time-equivariant contrastive
video representation learning. In ICCV, 2021. 3

[5] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: A large video
database for human motion recognition. In ICCV, 2011. 2

[6] Jianhua Lin. Divergence measures based on the shannon en-
tropy. IEEE Trans. Inform. Theory, 37(1):145–151, 1991.
2

[7] Yuanze Lin, Xun Guo, and Yan Lu. Self-supervised video
representation learning with meta-contrastive network. In
ICCV, 2021. 3

[8] Seong Joon Oh, Kevin Murphy, Jiyan Pan, Joseph Roth, Flo-
rian Schroff, and Andrew Gallagher. Modeling uncertainty
with hedged instance embedding. In ICLR, 2019. 3

[9] Rui Qian, Yuxi Li, Huabin Liu, John See, Shuangrui Ding,
Xian Liu, Dian Li, and Weiyao Lin. Enhancing self-
supervised video representation learning via multi-level fea-
ture optimization. In ICCV, 2021. 2, 3

[10] Rui Qian, Tianjian Meng, Boqing Gong, and Ming-Hsuan
Yang. Spatiotemporal contrastive video representation learn-
ing. In CVPR, 2021. 3

[11] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from from
videos in the wild. arXiv preprint arXiv:1212.0402. 2, 3, 4,
5

[12] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018. 1

[13] Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. Self-
supervised video representation learning by pace prediction.
In ECCV, 2020. 2


	. Uncertainty Computation on ProViCo
	. Probabilistic Distance
	. Other Distance Metrics
	. Comparison on Toy Experiment

	. Implementation Details
	. Two-stage Training
	. Finetuning and Inference
	. Code

	. Additional Results
	. Ablation Study
	. KL Regularization with 3D Visualization
	. Qualitative Results

	. Extension with Uncertainty
	. Uncertainty on Mixed Clips
	. Uncertainty on Masked Clips


