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1. Methodology
Details of Eq. (2) in the main text. We can write the first-
order Taylor expansion of the loss for an interpolation w.r.t.
zu as:

ℓ (fc (z̃α) , y
∗) ≈ ℓ (fc(z

u), y∗)+ (1)
(z̃α − zu)

⊺
.∇zuℓ (fc (z

u) , y∗) .

We also know that considering z̃α = αz⋆ + (1−α)zu, we
will have

z̃α − zu = (αz⋆ + (1−α)zu)− zu

= αz⋆ + zu −αzu − zu

= αz⋆ −αzu

= α(z⋆ − zu) . (2)

By replacing this in Eq. (1), we have

ℓ (fc (z̃α) , y
∗) ≈ ℓ (fc(z

u), y∗)+ (3)
(α (z⋆ − zu))

⊺
.∇zuℓ (fc (z

u) , y∗) .

which uncovers Eq. (2) in the main text.

Details of Eq. (5) in the main text. As stated in section
3.3 of the main text, using a 2-norm constraint on α, we
approximate the optimum interpolation ratio as

α∗ =argmax
∥α∥2≤ϵ

(α(z⋆ − zu))
⊺
.∇zuℓ(fc(z

u), y∗). (4)

By multiplying both sides of the constraint in Eq. 4 by ∥(z⋆−
zu)∥2, we have

∥α∥2 ∥(z⋆ − zu)∥2 ≤ ϵ∥(z⋆ − zu)∥2.

Based on Cauchy-Schwartz inequality, we know that
∥α(z⋆ − zu)∥2 ≤ ∥α∥2 ∥(z⋆ − zu)∥2. Thus, we can infer

∥α(z⋆ − zu)∥2 ≤ ϵ∥(z⋆ − zu)∥2 = ϵ′.

Therefore, we can change the optimisation problem to

α∗ = argmax
∥α(z⋆−zu)∥2≤ϵ′

(α(z⋆ − zu))
⊺
.∇zuℓ (fc(z

u), y∗) .

We can use the dual norm [3] of the above equation to ap-
proximate the optimum value for u = α(z⋆ − zu), which
is

u∗ = ϵ′
∇zuℓ (fc(z

u), y∗)

∥∇zuℓ (fc(zu), y∗) ∥2
. (5)

After replacing the actual values for u and ϵ′, we have

α∗ ≈ ϵ
∥(z⋆ − zu)∥2∇zuℓ(fc(z

u), y∗)

∥∇zuℓ(fc(zu), y∗)∥2
⊘ (z⋆ − zu), (6)

which reveals Eq. (5) in the main text (⊘ indicates element-
wise division).

It is worth mentioning that the denominator in Eq. 6
cancels out when utilised for the interpolation and as such
does not present any divide by zero problem in our approach.
Consider that we use α∗ in the following:

z̃α∗ = α∗z⋆ + (1−α∗)zu

= zu +α∗(z⋆ − zu) , (7)

where its value is obtained from the closed-form solution
in Eq. 6. When considering both together, it is easy to see
that the denominator simply cancels out with (z⋆ − zu). In
practice, adding a very small constant to the denominator
provides numerical stability and resolves this issue.

1.1. Relations Between ALFA-Mix and Other Base-
lines

Using gradients in BADGE: From Eq. (3) in the main text
we can understand that when the prediction is accurate and
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(b) Results on MNIST dataset using an MLP and a small
budget of size 100 at each round.

Figure 1. A comparative depiction of our approach (ALFA-Mix) vs. BADGE vs. adversarial in the latent space: Since ours considers
interpolations in the direction of the anchor points and proportional to their distance, it better evaluates the consistency of the predictions in
the latent space. When points are less consistent, it is more intuitive to consider them as candidates to be queried (e.g. zu

2 in this figure is
inconsistent after the interpolation, and hence likely to be queried).

confident, small movements of the latent representation to-
wards different directions (declared by anchors) should not
change the prediction. Otherwise, as per right-hand-side of
the equation, either the surface has changed dramatically or
the unlabelled features is far from the labelled representa-
tions (i.e. the features of the unlabelled instance are novel).
This is one of the major differences of our approach when
compared with BADGE that only relies on the gradients of
the unlabelled instances (Figure. 1).

Adversarial perturbation of features: To show the impor-
tance of the feature interpolations with labelled representa-
tions in our approach, we also considered using adversarial
noise as an alternative perturbation mechanism. For that,
we examined adding small values of noise δ to the latent
representations of each unlabelled point (instead of using
interpolations with anchors) to find inconsistencies in their
predicted labels. Following Eq. (3) and Eq. (4) in the
main text, we set the objective for finding the optimum noise
vector δ∗ as:

δ∗ = argmax
∥δ∥≤ϵ

ℓ(fc(z
u + δ), y∗). (8)

Similarly, using a first-order Taylor expansion w.r.t. zu and
its dual norm, we can approximate the optimum noise as

δ∗ ≈ ϵ
∇zuℓ(fc(z

u), y∗)

∥∇zuℓ(fc(zu), y∗)∥2
. (9)

After constructing a candidate set of unlabelled samples
whose predicted labels are not consistent after the adversar-
ial feature perturbation, we conduct clustering to sample a
diverse set from the candidate set (similar to ALFA-Mix).

Interestingly, as depicted in Figure. 1b, although the adver-
sarial approach shows better performance in comparison
to BADGE, it falls behind considerably when compared to
ALFA-Mix. We believe that the main advantage of ALFA-
Mix is the consideration of both the novelty of the features
and the extent of gradient at each unlabelled point. It is
worth mentioning that ALFA-Mix is able to identify more
inconsistencies all over the decision boundary (Figure. (6c)
in the main text).

Distribution matching. Denote ∆ = Ep(zl|Dl)

[
zl
]
−

Ep(zu|Du) [z
u] if we had the distributions in the latent space.

We know that based on the definition of the interpolation
between a pair of labelled and unlabelled samples (i.e.
z̃α = αzl + (1−α)zu), we can have

zu =
1

1−α

(
z̃α −αzl

)
.

By taking the expectation from both side of the above equa-
tion for all the labelled samples we have

zu = E
p(zl|Dl)

[
1

1−α

(
z̃α −αzl

)]
.

After replacing this in the definition of ∆, it is easy to show
that:

∆ =
1

(1−α)

(
E

p(zl|Dl)

[
zl
]
− E

p(zu|Du)

[
E

p(zl|Dl)
[z̃α]

])
.

That is, the interpolation operation we used here only affects
difference of the expectation of distributions with a constant
factor. When seen in light of Eq. (1) in the main text, it acts
as a simple surrogate for a divergence measure. In fact, this



Dataset Pool Size Label Size Input Initial Instances Budgets Architectures Initialisations

MNIST [8] 50, 000 10 28× 28 100 100, 1000 MLP, LeNet-5 Random, Continue**
EMNIST [5] 124, 800 26 28× 28 260 260, 2650 MLP, LeNet-5 Random, Continue
SVHN [9] 50, 000 10 32× 32 100 100, 1000 ResNet-18, DenseNet-121 Random
CIFAR10 [7] 50, 000 10 32× 32 100 100, 1000 ResNet-18, DenseNet-121 Random
DomainNet-Real-10* 4, 673 10 224× 224 100 100 ResNet-18, DenseNet-121 Pre-trained
DomainNet-Real-20* 8, 615 20 224× 224 200 200 ResNet-18, DenseNet-121 Pre-trained
CIFAR100 [7] 50, 000 100 32× 32 1000 1000 ViT-Small Pre-trained
Mini-ImageNet [13] 48, 000 100 84× 84 1000 1000 ViT-Small Pre-trained
DomainNet-Real [11] 122, 563 345 224× 224 3450 3450 ViT-Base, ResNet-18, DenseNet-121 Pre-trained

OpenML_6 18, 000 26 16 100 100 MLP Random
OpenML_155 50, 000 9 10 100 100 MLP Random

Table 1. A summary of diverse AL settings that we used in our image and non-image experiments. Overall, 30 different settings were
utilised in our experiments to compare AL methods in various conditions.
* These are two small subsets of DomainNet-Real that has been used to compare AL methods on small datasets with high-resolution images.
**"Continue" represents the setting where the weights of the network initialise from those of the network trained in the previous round.

relates our approach to other AL methods that their focus is
on finding the distributional difference between labelled and
unlabelled samples [4, 14].

Gradient-based interpolation optimisation. Following
[1, 10], we could have utilised iterative gradient-based op-
timisation to find the optimum interpolation ratios (instead
of the closed-form solution used in ALFA-Mix). For that,
motivated by the condition in the Eq. (6) in the main text
where we are interested in instances whose predictions flip
with an interpolation in the latent space, we can choose α as
a solution to the following:

α∗ = argmax
α∈ [0,αmax]D

ℓ(fc(αz⋆ + (1−α)zu), y∗), (10)

s.t. y∗ = argmax
k∈{1,...,K}

fk
c (z

u), ∀zu ∈ Zu, z⋆ ∈ Z⋆,

where αmax is a hyper-parameter governing the feature mix-
ing ratios. Intuitively, this optimisation chooses the hardest
case of α for each unlabelled instance and anchor. We per-
form few iterations of projected gradient descent to optimise
α. Our empirical studies reveal similar performances when
using this objective in comparison to the closed-form one.
However, the time required for the iterative gradient-based
approach is much more than the closed-form one (i.e. when
using 5 iterations of gradient update, it is 5x slower than
ALFA-Mix).

2. Experiments
2.1. Comparison matrix

We demonstrate the performance comparison between
every pair of AL methods over various settings in a penalty
matrix proposed in [2]. Each cell of the matrix reveals the
number of settings in which the method shown in the column
is outperformed by the ones indicated in the row. It should
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Data Type Image 28 74% 63% 69% 80% 65% 36% 33%
OpenML 2 95% 100% 90% 100% 100% 80% 55%

Architecture

MLP 8 98% 93% 96% 100% 99% 73% 64%
LeNet-5 5 100% 70% 74% 98% 66% 34% 14%
ResNet-18 7 61% 63% 60% 80% 51% 27% 24%
DenseNet-121 7 67% 59% 64% 83% 56% 24% 23%
ViT 3 100% 83% 100% 100% 100% 43% 60%

Initialisation
Random 18 72% 69% 65% 89% 62% 35% 29%
Pre-Training 9 99% 72% 97% 91% 88% 40% 43%
Continue 3 100% 100% 90% 100% 87% 83% 57%

Budget Small 22 86% 84% 86% 92% 82% 52% 46%
Large 8 74% 43% 53% 88% 46% 11% 9%

Overall 30 83% 73% 77% 91% 72% 41% 36%

Table 2. The percentage of the AL rounds in different settings
where ALFA-Mix outperforms other baselines, considering their
victory scores [2]. The chart of the same results is depicted in
Figure. 3 of the main text.

be noted that each setting consists of conducting R rounds
of AL with a specific labelling budget size B and using
a particular model architecture on a single dataset. Since
we repeat each setting with 5 different random seeds, at
each round r in the setting we use t-score of the difference
between the test performances (dri,j = ari − arj ) of each pair
of AL methods (i, j) over the 5 repeats:

cri,j =

√
5µr

σr
, (11)

µr =
1

5

5∑
m=1

dri,j , σr =

√√√√1

5

5∑
m=1

(dri,j − µr)2,



(a) Entropy [15] (b) DFAL [6]

Figure 2. Visualization of sample selection behaviours of some AL methods in the latent space (other methods can be found in Figure (2) of
the main text).
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(a) The confidence of the predicted Top-1 class.

2 4 6 8 10
AL Round

0.0

0.1

0.2

0.3

0.4

To
p-

2 
Pr

ed
ic

tio
n 

M
ar

gi
n

Margin-Based Sampling
Badge

Ours

(b) The margin (distance) between the predicted probabilities of the
Top-2 classes.
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(c) The entropy of the revealed ground-truth labels.
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(d) The entropy of the predicted Top-2 classes (ignoring the order of
them).

Figure 3. Uncertainty and diversity of the selected samples for labelling. All experiments are done on MNIST dataset using LeNet-5 model
and a small budget of size 100.

where ari and arj are the test performances of methods i and
j respectively at AL round r. Similar to [2], we also used a
threshold of 2.776 for this score to decide if method i wins
over method j. After clarifying the winner at each round
of the setting, we calculate Ci,j =

∑R
r=1 1cri,j>2.776/R as

the final victory score of AL method i over method j in that
specific setting. Additionally, to compute the matrix over
multiple settings, we simply report the element-wise sum of
all the individual matrices.

2.2. Sampling Diversity and Uncertainty
To have a better understanding with regards to the effec-

tiveness of our approach in selecting an uncertain and diverse
set of samples for labelling, we compare some characteris-
tics of the selected batch of instances at each AL round

comparing our method with those from BADGE [2] and
Margin-Based Sampling1 [12] (Figure 3).

Comparing the confidence and Top-2 prediction margins
of the selected unlabelled samples, depicted in Figures 3a
and 3b respectively, we can see that the uncertainty level of
the selected samples by our method is closer to the highest
possible value in comparison to BADGE sampling. Please
note that in contrast to what Margin-Based Sampling is do-
ing, we do not explicitly enforce our approach to select
samples close to the decision boundaries. On the other hand,

1Margin-Based Sampling is another AL method based on uncertainty. It
selects samples with the lowest distance between the predicted probabilities
for the Top-2 classes (called margin). It should be noted that BADGE
has shown significantly better performance compared to Margin-Based
Sampling in prior works [2].
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Figure 4. The t-SNE visualisation of the sample selection of our proposed method on MNIST dataset using LeNet-5. The model is trained
based on 500 random labelled set (shown as triangles) and is provided with a budget of size 500 to (depicted as bold circles).
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Figure 5. Pairwise comparison of different AL approaches based on the type of data. The maximum value of each cell for each setting is also
provided in the captions.
considering the higher entropy values in the ground-truth la-
bels of the selected set and their Top-2 predicted classes, we
can realise the capability of our proposed method in selecting
a diverse set of unlabelled samples in terms of their true class
labels and their position with regard to the decision bound-
aries. All in all, as depicted in Fig. 4, our method is able to
exploit both uncertainty and diversity concepts to select a
diverse set of samples that lie close to decision boundaries,
which leads to significantly higher performances.

2.3. More Ablations
In addition to providing the percentage with which our

approach outperforms others in each setting (Table. 2),
we report the pairwise comparison of all the AL methods
across various choices of data (Fig. 5), budget size (Fig. 6),
model architecture (Fig. 7) and network initialisation method
(Fig. 8. Further, in Figure 6c, we provide the pairwise com-
parisons in low-data regimes. Considering the values in the
rows and columns corresponding to our approach, we can
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Figure 6. Pairwise comparison of different AL approaches based on different sizes of budget. The maximum value of each cell for each
setting is also provided in the captions.

infer that our approach consistently outperforms all other
baselines regardless of the architecture, dataset selection,
network initialisation and budget size and is rarely beaten by
others.

2.4. All the Experiments

We compare our approach with other baselines over a total
of 285 AL rounds in 30 different settings, with each setting
identified by a specific combination of dataset, budget size,
model architecture, and model initialisation method. Table 2
demonstrates details of each setting we employed in our
experiments.

In our approach, we set ϵ = 0.2√
D

, where D is the dimen-
tionality of α vector. Considering the norm condition in Eq.
4 in the main text, we relate the scale of ϵ to D to easily

utilise the same hyper-parameter across different networks
with representations of variable dimensions.

All the experiments for small datasets were carried out
on a NVIDIA GEFORCE GTX 1080 Ti, while for larger
datasets we used an NVIDIA QUADRO RTX 8000. It is
worth mentioning that for the video experiments, we utilised
two NVIDIA V100 GPUs in parallel.

We borrowed the implementations of the baselines from
their publicly provided codes. The MLP network we em-
ployed in our experiments follows the architecture proposed
in [2]: a two-layer Perceptron with ReLU activations and
an embedding dimension of size 256 for image datasets
(i.e. MNIST and EMNIST). Similarly, we expanded the em-
bedding dimensionality to 1024 for OpenML datasets. We
include the accuracy curves over the unseen test set for all
the settings.
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(a) Two-layer MLP (maximum value: 8)
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(c) ResNet-18 (maximum value: 7)
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(d) DenseNet-121 (maximum value: 7)
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(e) ViT (maximum value: 3)
Figure 7. Pairwise comparison of different AL approaches based on different model architectures. The maximum value of each cell for each
setting is also provided in the captions.
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(a) Random (maximum value: 18)
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(b) Pre-Training (maximum value: 9)
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(c) Continue (maximum value: 3)
Figure 8. Pairwise comparison of different AL approaches based on different sizes of budget. The maximum value of each cell for each
setting is also provided in the captions.
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Figure 9. Small Budget, ViT-Base, DomainNet-Real

0 2000 4000 6000 8000 10000
#Labels

72

74

76

78

80

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Entropy
BALD
CoreSet

GCNAL
CDAL
BADGE
Ours

Figure 10. Small Budget, ViT-Small, Mini-ImageNet
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Figure 11. Small Budget, ViT-Small, CIFAR100
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Figure 12. Small Budget, MLP, MNIST
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Figure 13. Small Budget, MLP, MNIST, Continue
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Figure 14. Small Budget, MLP, EMNIST
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Figure 15. Small Budget, MLP, EMNIST, Continue
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Figure 16. Small Budget, LeNet-5, MNIST
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Figure 17. Small Budget, LeNet-5, MNIST, Continue
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Figure 18. Small Budget, LeNet-5, EMNIST
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Figure 19. Small Budget-ResNet-18, SVHN
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Figure 20. Small Budget, ResNet-18, CIFAR10
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Figure 21. Small Budget, ResNet-18, DomainNet-Real
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Figure 22. Small Budget, ResNet-18, DomainNet-Real-10

500 1000 1500 2000
#Labels

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Entropy
BALD
CoreSet

GCNAL
CDAL
BADGE
Ours

Figure 23. Small Budget, ResNet-18, DomainNet-Real-20
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Figure 24. Small Budget, DenseNet-121, SVHN
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Figure 25. Small Budget, DenseNet-121, CIFAR10
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Figure 26. Small Budget, DenseNet-121, DomainNet-Real
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Figure 27. Small Budget, DenseNet-121, DomainNet-Real-10
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Figure 28. Small Budget, DenseNet-121, DomainNet-Real-20
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Figure 29. Large Budget, MLP, MNIST
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Figure 30. Large Budget,MLP, EMNIST
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Figure 31. Large Budget, LeNet-5, MNIST

0 5000 10000 15000 20000 25000
#Labels

80

82

84

86

88

90

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Entropy
BALD
CoreSet

GCNAL
CDAL
BADGE
Ours

Figure 32. Large Budget, LeNet-5, EMNIST
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Figure 33. Large Budget, ResNet-18, SVHN
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Figure 34. Large Budget, ResNet-18, CIFAR10
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Figure 35. Large Budget, DenseNet-121, SVHN
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Figure 36. Large Budget, DenseNet-121, CIFAR10
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Figure 37. Small Budget, MLP, OpenML-6
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Figure 38. Small Budget, MLP, OpenML-155
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