
A. Importance of Accurate Shift and Scale for
3D Geometry Recovering

In this section, we show that accurate shift is crucial for
recovering 3D geometry while knowing scale value is not
necessary.

For data obtained from stereo videos [8], or stereo im-
ages [12], ground-truth disparity can be extracted only up
to unknown scale and shift coefficients. Without knowing
the correct disparity shift value, 3D geometry can not be
recovered.

Hereinafter, we assume that an RGB camera can be de-
scribed in terms of a pinhole model.

Let us consider the 3D line l parametrized with coeffi-
cients a, b, c. For projection point x, y on the camera plane,
its depth can be calculated as:

d = ax+ by + c, (1)

So, we can assign a depth value for each point along this
3D line. Suppose that inverse depth (disparity) values for
the points along the line are known up to shift and scale:
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or, equivalently,

d̃ =
ax+ by + c

C1 + C2(ax+ by + c)
. (3)

The expression above defines a 3D line if and only if
C2 = 0. Therefore, to obtain predictions from which 3D
geometry can be recovered, a neural network should explic-
itly estimate the C2 coefficient.

As shown, C2 coefficient has a large impact on the 3D
geometry. At the same time, C1 affects only the scale of the
scene. To illustrate that, we can consider mapping from a
camera plane point (x, y) having a depth d to a 3D point:x
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Suppose that the original depth map gets scaled by a fac-
tor C1. According to 4, the coordinates of 3D points get
then multiplied by C1 as well. We can interpret this as the
entire scene getting scaled by C1 without affecting the ge-
ometry correctness (e.g., all angles and curvatures remain
unchanged).

B. LRN-based Neural Network
Fig. 1 depicts the architecture of our LRN-based SVDE

models. Following [8], we use a RefineNet architecture to
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Figure 1. Architecture of our LRN-based SVDE models.

address the depth estimation problem. For the sake of effi-
ciency, we use Light-Weight RefineNet (LRN) [6].

The encoders are based on architectures from the Effi-
cientNet family [10]: EfficientNet-Lite0 and EfficientNet-
B5, both pre-trained on ImageNet.

In the original LRN model, each encoder output is pro-
cessed with a 1 × 1 convolution with 256 output chan-
nels. This parameter is hard-coded for both light-weight
and powerful models, so we can neither choose smaller val-
ues if building a light-weight decoder or use more chan-
nels for more powerful decoder architectures. We claim
this non-adaptive approach to be suboptimal and propose
a more flexible alternative. Unlike the original LRN, we set
the number of output channels in the fusion convolutional
layer equal to the number of channels in the corresponding
backbone level. Then, each encoder output gets fused with
the features from a deeper layer (see Fig. 1), and the fused
output has the same number of channels as the encoder out-
put.

C. Data
C.1. MiDaS Dataset Mixture

Stereo Movies The original StereoMovies dataset col-
lected in MiDaS [8] consists of 23 stereo videos and fea-
tures video frames from various non-static environments.
We follow the similar data acquisition and processing pro-
tocol, but, we use 26 additional stereo movies, totalling 49
movies (listed in Tab.1 and Tab. 2). The obtained video



Name Frames
3-D Sex and Zen: Extreme Ecstasy (2011) 3080
Battle of the Year (2013) 4074
Cirque du Soleil: Journey of Man (2000) 897
Creature from the Black Lagoon (1954) 680
Dark Country (2009) 324
Drive Angry (2011) 2437
Exodus: Gods and Kings (2014) 5650
Final Destination 5 (2011) 2212
Flying Swords of Dragon Gate (2011) 2618
Galapagos: The Enchanted Voyage (1999) 230
Ghosts of the Abyss (2003) 946
Hugo (2011) 3338
Into the Deep (1994) 22
Jack the Giant Slayer (2013) 5174
Journey 2: The Mysterious Island (2012) 3184
Journey to the Center of the Earth (2008) 1416
Life of Pi (2012) 5160
My Bloody Valentine (2009) 1627
Oz the Great and Powerful (2013) 4559
Pina (2011) 1827
Piranha 3DD (2012) 1766
Pirates of the Caribbean:
On Stranger Tides (2011) 5015

Pompeii (2014) 3644
Prometheus (2012) 4188
Sanctum (2011) 1976
Saw 3D: The Final Chapter (2010) 2757

Table 1. Stereo movies used in our experiments, part 1

frames are highly diverse, containing landscapes, architec-
ture, humans in action, and other various scenes.

We sample one frame per second from the collected
videos. We omit the first and the last 10% of frames as
they usually contain opening and closing credits. We con-
sider valid only the pixels where the discrepancy between
left to right and right to left disparities is less than 8 pix-
els. Accordingly, we use only images where the disparity
is valid for more than 80% of pixels and the difference be-
tween maximal and minimal disparities exceeds 8 pixels.

WSVD. We do not use the WSVD dataset [11] used in
the original MiDaS mixture since it contains data in the
form of web links referring to the sources that have already
been partially deleted.

C.2. LeReS Dataset Mixture

DIML Outdoor. DIML Outdoor contains calibrated and
rectified stereo images so that disparities can be extracted
via stereo matching. LeReS [14] uses GANet [15], while
we perform stereo matching with AANet [13].

Holopix. To obtain disparities from stereo data in

Name Frames
Sea Rex 3D (2010) 1015
Silent Hill: Revelation 3D (2012) 1747
Sin City: A Dame to Kill For (2014) 3585
Space Station 3D (2002) 362
Stalingrad (2013) 6453
Step Up 3D (2010) 3209
Step Up Revolution (2012) 3542
Texas Chainsaw 3D (2013) 3089
The Amazing Spider-Man (2012) 5378
The Child’s Eye (2010) 1232
The Darkest Hour (2011) 3640
The Final Destination (2009) 1998
The Great Gatsby (2013) 4788
The Hobbit:
An Unexpected Journey (2012) 4128

The Hobbit:
The Desolation of Smaug (2013) 7266

The Hobbit:
The Battle of the Five Armies (2014) 6568

The Hole (2010) 1685
The Martian (2015) 4893
The Three Musketeers (2011) 5284
The Ultimate Wave Tahiti (2010) 638
Ultimate G’s (2000) 366
Underworld: Awakening (2012) 3093
X-Men: Days of Future Past (2014) 3482
Overall 146242

Table 2. Stereo movies used in our experiments, part 2

Holopix [1], we opt for a more accurate PWCNet [9] in-
stead of FlowNet2 [2] used in LeReS.

The other datasets in MiDaS and LeReS dataset mixtures
are publicly available for downloading and contain ground
truth data, so we use these datasets ’as is’.

C.3. Data Used in Ablation Studies.

In ablation studies, we use the NYUv2 raw [5] dataset.
We select approximately 150k images from the training
subset, evaluating on the original test subset of 654 images.

D. Visualizations
In this section, we provide additional visualizations of

point clouds reconstructed from depth maps estimated with
different SVDE methods. To create a point cloud from pre-
dictions of our SVDE models, we apply the pre-trained fo-
cal recovery module from LeReS [14].

Qualitative comparison of our best GP2-trained B5-LRN
model with other existing SVDE methods is presented in
Fig. 2. Mannequin [3] is trained on UTS data obtained from
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Figure 2. Point clouds reconstructed from depth estimates obtained with existing SVDE methods, including our GP2-trained B5-LRN
SVDE model.
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Figure 3. Point clouds reconstructed from depth estimates obtained with existing SVDE methods, including our UTS-trained and GP2-
trained B5-LRN SVDE model.

3D reconstruction, so it predicts UTS depth. MiDaS [8] pre-
dicts depth with incorrect shifts, resulting in severely dis-
torted point clouds. DPT fine-tuned on NYUv2 estimates
absolute depth but also fails to restore the actual scene ge-

ometry.
In Fig. 3, we show the benefits of using UTSS data for

training a geometry-preserving SVDE model. For this pur-
pose, we train our B5-LRN model either on UTS data only
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Figure 4. Point clouds reconstructed from depth estimates obtained with LeReS+PCM and GP2-trained B5-LRN.



Figure 5. Point clouds obtained from depth estimates of our B5-LRN model. Paintings are a new data domain unseen during training,
however, our method successfully handles these images, estimating depth adequately.

Figure 6. Failure cases of our B5-LRN model: as one might see, reflective and glassy surfaces, mirrors, thin objects are difficult for our
model.



or on a mixture of UTS and UTSS data using GP2. Ac-
cording to the visualized point clouds, adding UTSS data
to the training mixture improves the quality of reconstruc-
tions. We also compare our GP2-trained B5-LRN model
with geometry-preserving MegaDepth trained on only UTS
data, non-geometry preserving MiDaS trained on a mixture
of UTS and UTSS data, and geometry-preserving LeReS
trained on a mixture of UTS and UTSS data. As one might
see, our GP2-trained B5-LRN allows recovering more ac-
curate point clouds, which testifies in favor of the proposed
training scheme.

To demonstrate the effectiveness of our training scheme
for general-purpose geometry-preserving SVDE, we com-
pare directly to LeReS+PCM being the only existing
general-purpose and geometry-preserving SVDE method
trained on a mixture of UTS and UTSS data. In Fig. 4,
we visualize point clouds reconstructed using depth maps
predicted by our GP2-trained B5-LRN SVDE model and
LeReS+PCM. Since both our model and LeReS use the
same module for focal length estimation, the observed qual-
ity gap should be attributed to the better depth estimates ob-
tained with our model.

Fig. 5 depicts the point clouds reconstructed from paint-
ings by the GP2-trained B5-LRN model. Paintings are
a new data domain unseen during training; however, our
model generalizes well even on non-photorealistic images.

Finally, we visualize some failures of GP2-trained B5-
LRN in Fig. 6 to give a complete picture. Expectedly, our
model fails on highly reflective and glassy surfaces, mirrors,
and thin objects.
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