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1. Network Architecture

Encoder: Following the recent works [3, 7], we use a
ResNet101 [6] as the encoder for the image. Each ResNet
block consists of series of convolution operations with
stride of 2 and pooling operations. The receptive field of
the convolution is increased by decreasing resolution of the
feature maps. This helps to capture more contextual in-
formation while compromising the feature map resolution.
The final size of the feature map is usually 1/32 of the in-
put image. The original ResNet is designed for the image
classification task. To utilize it for a per-pixel prediction
task, we remove the last 3 layers, i.e. pooling layer, fully-
connected layer and the softmax layer. The ResNet encoder
can be divided into 4 different blocks. Each block generates
feature maps of different resolution (scales). These feature
maps from different scales can be used as skip connections,
i.e. fused with decoder outputs to integrate different level of
semantic information. The output of the last encoder block
is fetched to both decoder heads. Both decoder heads also
receive the skip connection information.

Decoder: We base our decoder on [9] following [10]. We
replace all ReLU operations with ELU [1] nonlinearities.
The decoder is assembled from three modules: 1) Feature
fusion modules: For each of these modules, residual convo-
lution block is used to transform the skip connection feature
map from the ResNet encoder. The output of the residual
convolution block is fused with output of last feature fusion
block using summation operation. Finally, the feature maps
are upsampled to match the resolution of next layers input.
2) Residual convolution modules: This module is a series
of two units of ELU and 3 × 3 convolution operations to
merge the output of a previous decoder feature map output
with a previous feature fusion module output 3) Adaptive
output module: This is applied at the last stage to get the
final output. It consist of two 3 × 3 convolution operation
followed by up-sampling.
Plane coefficient decoder: The last layer of this decoder
head is modified to output 4-channels for each planar coef-
ficient instead of single channel depth.
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Figure 1: Plane coefficient guidance module.

Offset Vector field decoder: The last layer of this decoder
head is modified to output 3-channels, i.e. two channels for
the offset vector field and one for the confidence. The offset
vector field is restricted by tanh layers and the confidence
is generated through a sigmoid layer.
Plane coefficient guidance: This module is loosely based
on [7]. The output of each decoder block is passed through
the Plane coefficient guidance module to generate 4 chan-
nels of plane coefficients. The output size of the guidance
module is up-sampled to match the input size of last decoder
layer. At the end, these plane coefficients from each scale
are converted into depth. All these depth maps are concate-
nated with feature map of the previous decoder layer passed
to the last decoder layer.
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2. Additional Results

KITTI Benchmark [5]: In this section we present the re-
sults of KITTI Benchmark server evaluation. Note that we
train our model only on the KITTI Eigen split [2] training
data. It can be seen in Table 1 that our results are on a par
with SOTA methods and superior than the baseline. How-
ever, [7] performs better on this test set. In comparison with
[11], we have a better absolute relative error and our perfor-
mance is comparable to [11] in all other metrics. The drop
in overall performance is expected considering the design
of our method. Our method is specially designed to identify
planar regions in the scene, to improve the depth quality. So,
as the depth of the scene increases, the projections of dis-
tant parts of the scene get smaller. This causes difficulties
in predicting offset vector field in these regions. We have
already seen that our method produced the SOTA results
on the Garg split [4], in which the maximum depth value
is 50m. Due to the aforementioned reason, when tested on
Eigen split [2] with max depth of 80m, we observe degra-
dation in the performance. The KITTI Benchmark extends
beyond that with 80m+ distances, thus affecting our results
due to similar reasons.

Table 1: Results of KITTI Evaluation Server.

Method SILog sqErrorRel absErrorRel iRMSE
Official Baseline 18.19 7.32 14.24 18.50

VNL [11] 12.65 2.46 10.15 13.02
BTS [7] 11.67 2.21 9.04 12.23

Ours 12.82 2.53 9.92 13.71

Qualitative Results: Here, we present additional quali-
tative results on both KITTI [5] and NYU Depth-v2 [8]
datasets. We start with some examples from the KITTI
dataset. We present some of the best cases along with the
failure cases on this dataset. Additionally, we provide vi-
sualizations of the predicted depth maps and offset vector
fields on NYU Depth-v2. Finally, we use the predicted
depth maps to reconstruct the scenes and demonstrate qual-
ity in 3D. We observe that the predicted depth maps produce
3D reconstructions which are consistent with ground-truth
point clouds and preserve the structure of the scene.
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Figure 2: Visualization of predictions on KITTI dataset.
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Figure 3: Visualization of some failure cases on KITTI dataset.
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Figure 4: Visualization of predictions on NYU Depth-v2.
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Figure 5: Additional reconstruction examples from NYU Depth-v2.
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