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This Supplementary Material provides more details
about our approach that were not included in the main
manuscript due to space constraints. Here, the supplemen-
tary material includes additional quantitative and qualita-
tive evaluation, details about our processing on AVA, as
well as more details about our method and evaluation.

1. Additional quantitative evaluation
Smoothness terms: The proposed multi-shot optimiza-

tion incorporates a temporal smoothness regularization both
on the pose parameters and on the 3D joints. Here, we pro-
vide a more fine-grained ablative, where we investigate the
effect of each term in the optimization. We report the results
in Table 1, where we observe that using both terms together
improves upon using each term independently, which justi-
fies the existence of the two terms during the optimization.

Detailed results on Partial Humans dataset: In Ta-
ble 2 of the main manuscript, we provided results on the
Partial Humans dataset [26]. This dataset includes four sub-
sets (i.e., VLOG, YouCookII, Instructions and Cross-Task),
but for compactness, we reported the mean PCKh values,
averaged across the four subsets. Here, we provide the de-
tailed performance on each subset for the different meth-
ods/versions in Table 2.

Additional results for Transformer on 3DPW: In the
main manuscript, we investigated the performance of dif-
ferent temporal encoding architectures on multi-shot movie
data, and observed the benefit of the transformer encoder
compared to convolutional or recurrent architectures when
training/testing on movie sequences (Table 3 of the main
manuscript). Here, we provide further results on the more
conventional setting of monocular sequences, specifically
on the popular 3DPW dataset [29]. For this comparison, we
focus on the architecture of the temporal encoder, so we use
the public code from VIBE [13], adopting all their train-
ing details, but using our proposed transformer architecture
for the temporal encoder. The results of Table 3 indicate
that our transformer-based temporal encoder achieves re-
sults that are on par with the recurrent encoder of VIBE.
This demonstrates that our choice of a transformer-based
temporal encoder while being a more appropriate choice

Optimization H3.6M ↓ AVA ↑

Multi shot (no parameter smoothness) 63.5 49.0
Multi shot (no joints smoothness) 61.5 47.5
Multi shot (full) 59.2 55.2

Table 1. The effect of different smoothness terms on multi-shot
optimization. We show PA-MPJPE (Human3.6M) and cross-shot
PCK at α = 0.1 (AVA). The combined application of smoothness
terms on the joints and the pose parameters during our multi-shot
optimization improves results compared to independent applica-
tion of each term alone.

PCKh on Partial Humans Uncropped ↑

Method VLOG YouCook Instr Cross

HMR [11] 81.2 93.6 86.9 92.7
GraphCMR [16] 65.7 80.1 77.5 79.3
SPIN [15] 73.4 85.1 85.6 85.5
Partial Humans∗ [26] 68.7 95.4 77.9 91.1

ProHMR [17] 88.2 98.4 92.5 97.5
PARE [14] 91.3 96.4 93.5 96.3

HMR+ 86.9 96.8 92.4 96.2
+ AVA (2D keypoints) 88.1 98.3 92.0 97.3
+ AVA (single frame optim) 87.8 98.3 92.1 97.4
+ AVA (multi shot optim) 90.3 98.9 94.1 98.2

Table 2. Detailed results on Partial Humans. Note ∗ operates in
the harder setting, which uses the entire image as an input while
others operate on cropped bounding boxes.

when training/testing with movie sequences, which remains
the main focus of this work, it is also on par with the recent
state-of-the-art for conventional tasks (i.e., monocular se-
quences from 3DPW). Simultaneously, this acts as further
evidence that the improved performance on AVA is primar-
ily an effect of the transformer being a more appropriate
choice for movies (i.e., not because it is a stronger architec-
ture in general).

2. Additional qualitative results
We show more qualitative results in Figures 1 and 2. Fig-

ure 1 extends Figure 7 of the main manuscript providing
examples from typical cases where the multi-shot optimiza-
tion can improve compared to naive reconstruction without
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Model MPJPE PA-MPJPE PVE accel error

VIBE 56.5 93.5 113.4 27.1
t-HMMR 55.6 94.3 112.9 29.7

Table 3. Quantitative evaluation on 3DPW. When compared on
conventional monocular benchmarks, transformer is on par with
state-of-the-art recurrent networks.

leveraging the shot continuity. Figure 2 provides results on
the Partial Humans dataset [26], and compares our baseline
HMR+ model with our final model trained on frames from
AVA with pseudo-ground truth from multi-shot optimiza-
tion. The results of Figure 2 indicate that training with AVA
frames using our pseudo-ground truth can improve accuracy
and robustness on challenging examples, even when tested
outside AVA.
Failure cases: The most common failure for the multi-shot
optimization happens in cases with limited visibility of the
person, e.g., a head shot with only 2 or 3 detected keypoints.
In fact, in 12% of the shot changes used for the evaluation
on AVA, no keypoints are detected [4] for one of the two
frames on the shot boundary. This means that the optimiza-
tion cannot leverage the second shot. In these cases, pre-
dictive models, like the proposed transformer, could take
advantage of the image cues (pixels) even in the absence of
keypoint detections. Yet, extreme close-up shots (less than
5% of the body visible) is a challenge for predictive models
too. In Figure 3, we present some representative examples
with very limited visibility where the single frame regres-
sion model is producing incorrect reconstructions.

3. AVA dataset

A large part of our experiments is performed using the
AVA dataset. After the preprocessing described in Section
3 of the main manuscript, we generate 6.7k tracklets. For
each tracklet, we apply our multi-shot optimization which
is used for pseudo ground-truth generation. Other forms of
2D detections could be applicable for the optimization (e.g.,
potentially silhouettes [18] or dense correspondences [7]),
but we use 2D keypoints which tend to be the more robust
and are used as the main source of supervision by recent
work on human mesh recovery, e.g., [2,6,10–13,15,16,22–
24, 26, 28]. Since only 2D keypoints are used, it is possible
that the recovered body shape is not very accurate, but this
is common issue in all of the above human mesh recovery
approaches, where the regressed shape is often close to the
mean human shape. Instead, our focus here is primarily
on the pose estimation part, which is also reflected in the
metrics we use for evaluation.

Test set verification: For the test set, we perform man-
ual verification on the recovered tracklets to eliminate er-

rors in shot change detection, tracklet Re-ID, or 2D key-
points. This manual cleaning returns a set of 2.3k instances
with shot changes where the same person is visible in both
frames (before and after the shot change). The reported
cross-shot PCK metric is computed on these 2.3k pairs of
images. For all results, we use the value α = 0.1 to com-
pute cross-shot PCK results. We highlight that we do not
use the pseudo ground truth from multi-shot optimization
for our evaluation, since this can still be inaccurate.

4. Method details
Preprocessing details: For our preprocessing, we use

the Re-ID network of [8] to compute affinities between
pairs of bounding boxes of humans. To avoid connect-
ing identities in different scenes, we weight the affinity of
each pair by the temporal distance (i.e., frames) between
the two bounding boxes. If the affinity of a pair is larger
than a threshold, we attribute the people in the correspond-
ing bounding boxes to the same identity. For each bound-
ing box, we also check if a set of keypoint detections from
OpenPose is included in this box. If such detections exist,
they are also associated with the corresponding bounding
box, and are used as input to the multi-shot optimization.

Multi-shot optimization details: For our multi-shot op-
timization, we use the prediction of our baseline HMR+

model as an initial estimate of the optimization for each
frame. If the torso keypoints are not detected by the key-
point detector, we use the projection of the torso joints from
the regressed model estimate as pseudo targets in the op-
timization. This helps to constrain the torso position and
orientation in cases of extreme truncation. The multi-shot
optimization lasts for one stage. This is equivalent to the last
stage of the 4-stage SMPLify [3] optimization. We keep the
same weights for the data term Eproj and the prior terms
Eprior. More specifically, with Eproj we refer to the same
data term as SMPLify, while with Eprior, we refer to the
two body pose priors (GMM and angle prior) and the body
shape prior from SMPLify [3]. The weights of the smooth-
ness terms are set to 1e+ 7. For the optimization, the body
root is considering to be in the origin before applying the ro-
tation RT

gl. The translation is applied afterwards, as part of
the camera transformation. Consistency for camera param-
eters and body shape is enforced (focal length is constant
for all cameras; we heavily penalize changes in the body
shape parameters).

Novelty: From a technical perspective, our multi-shot
optimization is similar to previous optimization approaches,
e.g., [3,23,25], but our contribution lies in 1) demonstrating
that with some modification (i.e., inference in the canonical
frame, instead of the camera frame), we can adapt a canon-
ical optimization example (SMPLify) to the multi-shot sce-
nario, so that we can benefit from multi-shot continuity, and
2) demonstrating that with this novel insight of multi-shot
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Figure 1. Qualitative effect of our multi-shot optimization. Extension of Figure 6 of the main manuscript. Although the single frame
optimization baseline fails on more challenging frames with heavy truncation, our multi-shot optimization leverages information from the
less ambiguous frame across the shot boundary to get a more accurate 3D reconstruction overall.

continuity, we can also also benefit in downstream tasks
(training direct prediction models for human mesh recov-
ery from image/video on movie sequences).

Pseudo-ground truth quality: As we discussed also in
the main manuscript, our multi-shot reconstructions can in-
clude some incorrect 3D meshes. Depending on the quality
required for each application, one could consider ways to
manually, or automatically clean the reconstructions (e.g.,
check for mesh interpenetrations, or evaluate consistency
with other 2D cues, for example silhouettes). However,
following other approaches that use optimization routines
to generate pseudo-ground truth for training, e.g., [2, 15],
we do not perform elaborate filtering of the reconstructed
data, and instead demonstrate their effectiveness by achiev-
ing improvements in downstream training tasks.

Body model choice: For our experiments, we use
SMPL [21], since it is more widely adopted in the related
literature for single/multi frame mesh recovery [11–13,15].
Our optimization code also supports SMPL-X [23], how-
ever, the downstream methods using it are limited (e.g., [5]),
so we focus on SMPL to perform our analysis.

Regression model choice: As the basic component of
our single-frame regression, we use the HMR model [11],
which is widely adopted in the literature [2, 6, 15, 24, 27].
Most of our ablations also focus on models that share these
design choices, i.e., [11,15,16,26]. However, for complete-

ness, we have also included results from the most recent
variations for human mesh recovery [14, 17].

Training details: For our single frame regression
model, we use the same architecture as the original HMR
model [11]. Following SPIN [15], the regression target for
the SMPL pose parameters is expressed in the continuous
6D representation introduced by Zhou et al. [32]. To train
our baseline model, we use images from Human3.6M [9],
COCO [19] and MPII [1]. To benefit from supervision
with SMPL parameters, in the case of Human3.6M we use
MoSh [20] ground truth, while for COCO and MPII, we use
SPIN [15] pseudo-ground truth. To train our final model,
we also incorporate frames from AVA with pseudo-ground
truth from multi-shot oprimization in the training. The
batch size is equal to 64, learning rate is 1e − 4, and train-
ing lasts for 1.2M iterations. The weight for the keypoint
reprojection loss L2D is equal to 1, while the weight for the
parameter losses Lsmpl is equal to 0.1.

For our temporal t-HMMR model, following
HMMR [12], the temporal receptive field is set to 13
frames. For the temporal encoder we use one transformer
encoder layer with a single attention head. The batch size is
set to 128 (128 subsequences of length equal to 13 frames),
learning rate is set to 1e − 4 and training lasts for 100k
iterations. The weights for the keypoint reprojection and
parameter losses are the same with the HMR training. For
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Figure 2. Qualitative effect of training with data from AVA. We present results on the Partial Humans dataset [26]. The inclusion of
frames from AVA with multi-shot pseudo-ground truth can improve the accuracy and robustness on challenging examples, compared to our
baseline HMR+ model, even when it is tested outside AVA.
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Figure 3. Failure cases of our single-frame model. Extreme
close-up shots (i.e., when less than 5% of the body is visible) is a
huge challenge. Here we demonstrate some failures of our single
frame human mesh regression model.

the temporal consistency losses, we use weight 0.015 for
3D keypoints Lt

sm joint and 0.05 for parameter consistency
Lt

sm param. Again, our training data combine sequences from
standard benchmarks (e.g., Human3.6M [9]) and our re-
constructed AVA sequences. Also, for the non-transformer

baselines, we explored two different strategies to deal
with the missing frames (e.g., due to b-rolls) in our AVA
sequences; a) concatenate all frames together, ignoring
missing frames and b) use a blank element (all zeros) to
indicate a missing frame. Since the second strategy worked
the best, we adopted it to report results.

5. Evaluation details

Cross-shot PCK: For the computation of the cross-shot
PCK metric, we consider frames t and t+1, before and after
the shot change, as well as the corresponding predictions
for both frames, i.e., the canonical shape, global orientation
and camera parameters. For the evaluation, we project the
canonical shape of frame t on frame t+ 1, using the global
orientation and camera parameters estimated for frame t+1.
Then, the typical PCK metric can be computed between the
projected joints of the mesh and the detected keypoints for
frame t+ 1. This procedure is also repeated in the opposite
direction (projecting the canonical shape of frame t + 1 on
frame t using the camera estimated for frame t).

Evaluation metrics: In the main manuscript, we pro-



vide evaluations using a variety of metrics, depending on
the ground truth information we have. Here, for complete-
ness, we provide pointers to the definition of these metrics:
PA-MPJPE: With MPJPE [9], we refer to the Mean Per
Joint Position Error, i.e., the Euclidean distance between
ground truth and predicted 3D joints, averaged over all
joints. With PA-MPJPE, we refer to this metric, when
we can use Procrustes alignment to align the predicted 3D
joints with the ground truth 3D skeleton before computing
the per joint error. Detailed definition of this metric is pro-
vided in [31] (authors refer to it as “reconstruction error”).
PCKh: PCK [30] refers to the percentage of correctly local-
ized keypoints. For each predicted 2D keypoint, its distance
from the ground truth keypoint is computed. Then, we con-
sider as “correctly localized” the set of keypoints for which
this distance is smaller than a specific threshold value and
compute the percentage of this keypoints compared to all
keypoints to report PCK. In the case of PCKh [1], for the
threshold value, we use 50% of the head segment length.

Human3.6M evaluation setting: In Table 1 of the main
manuscript we provide an evaluation on Human3.6M [9].
For this evaluation, we synthesized shot changes by us-
ing consecutive frames coming from different camera view-
points. Following the usual evaluation, we use all actions
from users S9 and S11, we introduce one shot change every
second and we apply the three different optimization strate-
gies (single frame, single shot, multi shot). In all cases,
we use 2D keypoint detections from OpenPose [4] for the
fitting. Eventually, the 3D reconstruction accuracy is esti-
mated using the standard PA-MPJPE metric.

Partial Humans evaluation setting: Following previ-
ous work [11, 15, 16], our single frame model uses as input
cropped bounding boxes of humans. Since the approach
of [26] uses the full image as input, we evaluate their net-
work using this setting (Table 2 of the main manuscript).
We also experimented using the cropped bounding box as
input, but this returned inferior results.
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