
A. Video Results
Please see our project page at www.wpeebles.

com/gangealing for animated results, augmented reality
applications and visual comparisons against other methods.

B. Implementation Details
Below we provide details regarding the implementation of

GANgealing. Our code is also available at www.github.
com/wpeebles/gangealing.

B.1. Spatial Transformer
Our full Spatial Transformer T is composed of two indi-

vidual Spatial Transformers: Tsim—a network that takes an
image as input and regresses and applies a similarity trans-
formation to the input—and Tflow—a network that takes an
image as input and regresses and applies an unconstrained
dense flow field to the input. The warped output image pro-
duced by Tsim is fed directly into Tflow. Our final composed
Spatial Transformer is given by T = Tflow � Tsim, where we
compose the warps predicted by the two individual networks
and apply it to the original input to obtain the final output.

The architectures of Tsim and Tflow are identical up to
their final layers. Specifically, they each use a ResNet back-
bone [30], closely following the design of the ResNet-based
discriminator from StyleGAN2 [43]; in particular, we do not
use normalization layers. We do not use weight sharing for
any layers of the two networks, and both modules are trained
together jointly from scratch.

Similarity Spatial Transformer. The final parametric
layer of Tsim takes the spatial features produced by the
ResNet backbone, flattens them, and sends them through
a fully-connected layer with four output neurons o1, o2, o3
and o4. We construct the affine matrix M representing the
similarity transform as follows:

r = ⇡ · tanh(o1) (7)
s = exp(o2) (8)
tx = o3 (9)
ty = o4 (10)

M =

2

4
s · cos(r) �s · sin(r) tx

s · sin(r) s · cos(r) ty

0 0 1

3

5 (11)

To obtain the warped output image, we apply the affine
matrix M to an identity sampling grid, and apply the result-
ing transformed sampling grid to the input.

Unconstrained Spatial Transformer. The features pro-
duced from Tflow’s ResNet backbone have spatial resolution
16 ⇥ 16. These features are fed into two separate, small

convolutional networks: (1) a network that outputs a coarse
flow of spatial resolution 16⇥ 16 with 2 channels (the first
channel contains the horizontal flow while the second con-
tains the vertical flow); (2) a network that outputs weights
used to perform learned convex upsampling as described in
RAFT [75]. Both of these networks consist of two conv lay-
ers (each with 3⇥ 3 kernels and unit padding) with a ReLU
in-between. After performing 8⇥ convex upsampling on the
coarse flow, we obtain our higher resolution flow gdense of
resolution 128⇥128. This flow field can be further densified
with any type of interpolation.

In the case of the composed Spatial Transformer, we
directly compose gdense with the affine matrix M predicted
by Tsim. We then sample from the original, unwarped input
image according to this composed flow.

B.2. Clustering
For the clustering-variant of GANgealing (K > 1), our

architectures as described above are only slightly changed
as follows. Tsim’s final fully-connected layer has 4K output
neurons that are used to build a total of K affine matrices
{Mk}Kk=1, one warp per cluster.

Similarly, the only change to Tflow is that the two con-
volutional networks at the end of the network each have
K times as many output channels—each cluster predicts
its own coarse-resolution 16 ⇥ 16 flow and its own set of
weights used for convex upsampling.

Cluster Initialization. In contrast to the K = 1 case
(where we initialize c as w̄, the average w vector), we
randomly-initialize the ci. We do this using K-means++ [5]
(only the initialization part). In standard K-means++, one
selects centroids from points in the input dataset. In our case,
we generate a pool of 50,000 random w vectors to apply
K-means++ to. The first centroid c0 is selected uniformly
at random from the pool. Recall that K-means++ requires
a distance function so it can gauge how well-represented
the points in the pool are by the currently selected cen-
troids. We define the distance between two latent vectors
as d(w1,w2) = `(G(mix(w1, w̄)), G(mix(w2, w̄))). The
motivation for feeding-in w̄ into the later layers of Style-
GAN is to ensure that the two latents are being compared
based on the poses they represent when decoded to images,
not the appearances they represent.

B.3. Smoothly-Congealed Target Images

PCK@↵bbox = 0.1
w/o target annealing 59.3%
w/ target annealing 67.2%

Table 4. The effects of smooth target annealing for LSUN Cats.
Smooth target annealing improves GANgealing performance.

A significant benefit of GAN-Supervision is that it nat-
urally admits a smooth learning curriculum. Rather than
force T to learn the (often complex) mapping from x to
y at the onset of training, we can instead smoothly vary
the latent vector used to generate the target y from w to
mix(c,w). Early in training, y ⇡ x and T thus only has
to learn very small warps where there are large regions of
overlap between its input and target. As training proceeds,
we gradually anneal the target latent w ! mix(c,w) with
cosine annealing [53] over the first 150,000 gradient steps.
As this occurs, the learned y target images gradually become
aligned across all w and require T to predict increasingly
intricate warps. As shown in Table 4, excluding this smooth
annealing degrades performance from 67.2% to 59.3%.

B.4. Horizontal Flipping
Because Tsim regresses the log-scale of a similarity trans-

formation (o2), it is incapable of performing horizontal flip-
ping. While Tflow is in principle capable of learning how to
horizontally (or vertically) flip an image, in practice, we find
that it is beneficial to explicitly parameterize horizontal flips.
We found two methods effective.

Unimodal Models. Our unimodal models (K = 1) are
not trained with any flipping mechanism, and we introduce
the capability only at test time. This is done with the flow
smoothness trick as described above in Supplement G.2—we
query T with both x and flip(x), choosing whichever yields
the smoothest flow field. This simple heuristic is surprisingly
reliable.

Clustering Models. Clustering models provide a slightly
more direct way to handle flipping. During training, when
we evaluate the perceptual reconstruction loss on an input
fake image G(w), we also evaluate the loss on flip(G(w))
(the loss is computed against y = G(mix(c,w)) for both
inputs). We only optimize the minimum of those two losses.
At test time, we need to train a classifier to predict whether
an input image should be flipped. To this end, we have the
cluster classifier (as described in Section 3.2) directly predict
both cluster assignment as well as whether or not the input
should be flipped by simply doubling the number of output
classes.

B.5. Training Details
As with most Spatial Transformers, we initialize the final

output layers of our networks such that they predict the
identity transformation. For Tsim, this is done by initializing
the final fully-connected matrix as the zeros matrix (and
zero bias); for Tflow, the convolutional kernel that outputs the
coarse flow is set to all-zeros.

We jointly optimize the loss with respect to both T and c
using Adam [45] (we do not use alternating optimization).

Dataset W+ cutoff N K GAN Resolution
LSUN (unimodal) 5 1 1 256⇥256
CUB 5 1 1 256⇥256
LSUN (clustering) 6 5 4 256⇥256
In-The-Wild CelebA 6 512 1 128⇥128

Table 5. GANgealing Hyperparameters.

We use a learning rate of 0.001 for T and a learning rate of
0.01 for c. We apply the cosine annealing with warm restarts
scheduler [53] to both learning rates. We use a batch size
of 40. Finally, we note that we do not make use of any data
augmentation—GANgealing uses raw samples directly from
the generator as the training data.

B.6. Hyperparameters
We use �TV = 2500 for all models trained with LPIPS

and �TV = 1000 for all models trained with the self-
supervised perceptual loss. All models use �I = 1. We
detail other hyperparameters in Table 5.

N controls how many degrees of freedom c has in choos-
ing the target pose that T congeals towards. As shown in
Table 3, small N are critical for some models (LSUN Cats
with N = 512 gets less than 1% PCK on SPair Cats whereas
N = 1 achieves 67%). However, StyleGAN2 generators
with less expressive W spaces (such as those trained on In-
The-Wild CelebA) can function well without any constraints
(N = 512).

Padding Mode. One subtle hyperparameter is the padding
mode of the Spatial Transformer which controls how T

samples pixels beyond image boundaries. We found that
reflection padding is the “safest" option and seems to
work well in general. We also found border padding works
well on some datasets (e.g., LSUN Cats and Dogs, CUB,
In-The-Wild CelebA), but can be more prone to degener-
ate solutions on datasets like LSUN Bicycles and TVs. We
recommend reflection as a default choice.

B.7. Direct Image-to-Image Correspondence
Our method is able to find dense correspondences directly

between any pair of images xA and xB . Figure 8 gives an
overview of the process. At a high-level, this merely involves
applying the forward warp that maps points in xA to points
in T (xA) and composing it with the reverse warp that maps
points in the congealed coordinate space back to xB . We go
into detail about this procedure in this section.

Recall that T outputs a sampling grid g which maps
points in congealed space to points in the input image. With-
out loss of generality, say we wish to know where a point
(i, j) in xA corresponds to in xB . First, we need to deter-
mine where (i, j) maps to in the congealed image T (xA)—
i.e., we need to congeal point (i, j). This is given by the
value at pixel coordinate (i, j) in the inverse of the sampling

!! !"

"(!!) "(!")

Congeal
Points

Uncongeal
Points

Copy
Points

("!") (")

Figure 8. The process for finding correspondences between two
images with GANgealing.

grid produced by T for xA. When T produces similarity
transformations, we can analytically compute this inverse by
inverting the affine matrix representing the similarity trans-
form and applying it to the identity sampling grid. Unfortu-
nately, for the unconstrained flow case we cannot analytically
determine g�1. There are many ways one could go about
obtaining this inverse. We opt for the simplest solution—
inversion via nearest neighbors. Specifically, we can approx-
imate the quantity by using nearest neighbors to find the pixel
coordinates that give rise to the coordinates closest to (i, j)
in g. Recall that gi,j is the input pixel coordinate that gets
mapped to pixel (i, j) in congealed coordinate space. Then
we can approximate g�1

i,j
⇡ argmin

i0,j0 ||gi0,j0 � [i, j]||2.
Now that we know where points in xA map to in T (xA),

the last step is to determine where the congealed points (g�1
i,j

)
map to in xB—i.e., we need to uncongeal g�1

i,j
. This is the

easy step: we need only query the sampling grid (produced
by applying T to xB) at location g�1

i,j
.

C. Clustering Results
Figure 9 shows our K = 4 learned clusters for our LSUN

Cars and Horses models. We show dense correspondence
results for various clusters in Figure 10.

D. Visualizing GAN-Supervised Training Data
We show examples of our paired GAN-Supervised train-

ing data in Figure 11. In Table 3, we showed that learning the
fixed mode can be essential for some datasets (e.g., LSUN
Cats). Figure 11 illustrates one potential reason why it is
so critical: often, the initial truncated target mode in Style-
GAN2 models produces unrealistic images. For example,
truncated bicycles are surrounded with incoherent texture
and have an unnatural structure, truncated TVs are unintelli-

gible and truncated cats have unnatural bodies. Congealing
all images to these poor targets could produce erroneous cor-
respondences; hence, learning the target mode is in general
very important.

Furthermore, the initial mode is often unsuitable as a
dataset-wide congealing target. For example, not all LSUN
Cat images (real or fake) feature the full-body of a cat, but
most do feature a cat’s upper-body. Hence, GANgealing
updates the target to a more suitable target “reachable" by
the broader distribution. Finally, also observe that our Spatial
Transformer can be successfully trained even in the presence
of imperfect targets: the target bicycles sometimes do not
retain the color of the corresponding input fake bicycle, for
instance.

E. Accelerating GAN Training with Learned
Pre-Processing

A natural application of GANgealing is unsupervised
dataset alignment for downstream machine learning tasks. In
this section, we use our trained Spatial Transformer networks
to align and filter data for GAN training.

Filtering. The first step is dataset filtering. We would like
to remove two types of images: (1) images for which our
Spatial Transformer makes a mistake (i.e., produces an erro-
neous alignment) and (2) images that are unalignable. For
example, several images in LSUN Cats do not actually con-
tain any cats. And, some images contain cats that cannot
be well-aligned to the target mode (e.g., due to significant
out-of-plane rotation of the cat’s face). We can automatically
detect these problematic images by examining the smooth-
ness of the flow field produced by the Spatial Transformer
for a given input image: images with highly un-smooth flows
usually correspond to one of these types of problematic im-
ages. Please refer to Supplement G.2 below for a detailed
explanation of this procedure. Here, we experiment with
dropping 75% of real images (those with the least-smooth
flow fields), reducing LSUN Cats’ size from 1,657,264 im-
ages to 414,316 images.

Alignment. The second step is to align the filtered dataset.
This is done by applying our Spatial Transformer to con-
geal every image in the input dataset. To avoid introducing
excessive warping artifacts into the output distribution, we
only use our similarity Spatial Transformer Tsim (which per-
forms oriented cropping) in this step—we merely remove
the unconstrained Tflow Spatial Transformer module from
our trained T . To ensure a high quality output dataset, we
remove some additional images during this procedure. (1)
We removes images for which Tsim has to extrapolate a large
number of pixels beyond image boundaries to avoid output
images with lots of visible padding. (2) We remove images

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 0 Cluster 1 Cluster 2 Cluster 3

LSUN Cars LSUN Horses

Figure 9. Learned clusters. We show three samples of target images y at the end of training which define our K = 4 learned clusters.

LS
U

N
 H

or
se

s
(C

lu
st

er
 0

)
LS

U
N

 H
or

se
s

(C
lu

st
er

 2
)

LSU
N

 C
ars (C

luster 1)
LSU

N
 C

ars (C
luster 2)

Figure 10. Dense correspondence results for different clusters. For each cluster, the top row shows unaligned real images assigned to
that cluster by our cluster classifier; we also show the cluster’s average image. The middle row shows our learned transformations of the
input images. The bottom row shows dense correspondences between the images.

where Tsim zooms-in “too much." The motivation for this sec-
ond criterion is that some images contain very small objects,
and in these cases the congealed image will be low resolu-
tion (blurry). These two heuristics further reduce dataset size
from 414,316 images to 58,814 high quality aligned images.

Quantitative Results. We apply our learned pre-
processing procedure to the LSUN Cats dataset for
downstream GAN training. As is common practice when
training GANs on aligned datasets like AFHQ and FFHQ,

we use mirror augmentations [42] when training on our
aligned data. In Figure 12, we show that training with our
learned pre-processing enables GANs to converge to good
FID [31] faster by simplifying the training distribution. We
also show that while only filtering the dataset to 58,814
images without alignment accelerates convergence (a
conclusion similar to the one found by DeVries et. al [18]),
both steps together provide the greatest speed-up. We
stress that our gains in Figure 12 come from simplifying
the training distribution. We leave showing how learned

(,)training

(,)training

(,)training

! "

LSUN Cats

(,)training

(,)training

(,)training

! "

LSUN Bicycles

(,)training

(,)training

(,)training

! "

LSUN Dogs LSUN TVs

(,)training

(,)training

(,)training

! "
Figure 11. Examples of GAN-Supervised paired data used in GANgealing. For each dataset, we show random GAN samples x = G(w)
used to train our Spatial Transformer. For each input x, we show both the initial target image y = G(mix(c = w̄,w)) as well as our learned
target at the end of training y = G(mix(c,w)). The initial target images (initialized with the truncation trick) are often unrealistic—for
example, the initial LSUN TV targets are largely incoherent. Learning c is essential so images can be congealed to a coherent target. Note
that we omit target annealing (Supplement B.3) in this visualization for clarity.

Figure 12. The effect of aligning and filtering datasets before
GAN training. Each curve represents a StyleGAN2 trained on
LSUN Cats with different data pre-processing. For each model, we
compute FID against its corresponding pre-processed real distri-
bution (i.e., the Original LSUN Cats curve computes FID against
LSUN Cats, Filtered LSUN Cats computes FID against the fil-
tered LSUN Cats distribution, etc.). Aligning and filtering images
with our method yields significantly better FID early in training by
simplifying the real distribution.

alignment can improve performance on the original,
unaligned distribution to future work. Given the extent to
which human-supervised dataset alignment and filtering
is prevalent in the GAN literature [15, 40, 42], we hope
our unsupervised procedure will be used in the future to
automate these important steps.

Visual Results. In Figure 13 we show 96 uncurated, un-
truncated GAN samples for the baseline LSUN Cats model
(FID versus LSUN Cats is 6.9); in Figure 14 we show un-
curated samples from a StyleGAN2 trained on our learned
aligned and filtered LSUN Cats (FID versus pre-processed
LSUN Cats is 3.9). Our learned alignment improves the
visual fidelity of the generator by reducing the complexity
of the real distribution through alignment and filtering.

F. Uncurated Dense Correspondence Results
Below we show 120 uncurated dense correspondence

results for each of our eight datasets. The results are best
viewed zoomed-in.

G. Emergent Properties of GANgealing
We empirically find that our Spatial Transformer develops

two useful test time capabilities from training with GANgeal-
ing.

G.1. Recursive Alignment
Recall that our Spatial Transformer consists of two sub-

modules: a similarity warping Spatial Transformer Tsim and
an unconstrained Spatial Transformer Tflow. Once trained,
we find that Tsim’s primary role is to localize objects and
correct in-plane rotation; Tflow brings the localized object
into tight alignment by handling articulations, out-of-plane
rotation, etc. For especially complex datasets (e.g., all LSUN
categories), objects appear at many scales and are sometimes
non-trivial to accurately localize. Surprisingly, we find that
the Tsim network can be applied recursively multiple times to
its own output at test time, significantly improving the ability
of T to accurately align challenging images. This recursive
processing appears to be relatively stable—i.e., T does not
explode as we increase the number of recursions. We use
three recursive iterations of Tsim for our LSUN models.

We suspect the reason this behavior emerges is because,
over the course of training, it is likely that many generated in-

Figure 13. Uncurated samples from an LSUN Cats StyleGAN2.

Figure 14. Uncurated samples from a StyleGAN2 trained on LSUN Cats pre-processed with our learned alignment and filtering.
Our method leads to a GAN with higher overall visual fidelity at the cost of reduced dataset complexity.

Figure 15. LSUN Bicycles uncurated results.

Figure 16. LSUN Cats uncurated results.

Figure 17. LSUN Dogs uncurated results.

Figure 18. LSUN TVs uncurated results.

Figure 19. LSUN Cars (cluster 1) uncurated results.

Figure 20. LSUN Horses (cluster 0) uncurated results.

Figure 21. In-The-Wild CelebA results. The results are uncurated
with the exception of replacing three potentially offensive images.

Figure 22. CUB uncurated results.

Figure 23. GANgealing produces high frequency flow fields for
unalignable images. Each image in the top row shows a cat that
either cannot be congealed to the learned mode or is a failure case
of the Spatial Transfer. Our T produces high frequency flows to try
and “fool" the perceptual loss for these hard cases. These examples
are easily detected.

puts x will be sampled that are close to the target y. In other
words, it is likely that w get sampled such that w ⇡ c3, and
hence the Spatial Transformer must learn to produce approx-
imately the identity function in these cases. Thus, aligned
fake images happen to be in-distribution for T , meaning it
can stably process increasingly aligned real images at test
time without issue in this recursive evaluation.

G.2. Flow Smoothness
A particularly useful behavior developed by our T is a

tendency to fail loudly. What happens when T is faced with
an unalignable image or makes a mistake? As shown in
Figure 23, T produces very high-frequency flow fields to
try and fool the perceptual loss (e.g., by synthesizing cat
ears and eyes from background texture). It turns out these
failure cases are easily detectable by simply measuring how
smooth the flow field produced by T is—this can be done
by evaluating our LTV total variation loss on the flow. This
behavior enables several test time capabilities; for example,
we can determine if an image should be horizontally flipped
by merely running x and flip(x) through T and selecting
whichever input yields the smoothest flow. Or, we can score
real images by their flows’ LTV and drop a percentage of the
dataset with the worst (most positive) scores—this is how
we perform dataset filtering with our T as part of our learned
pre-processing for downstream GAN training as described
above in Supplement E.

H. Performance
Training. Our unimodal GANgealing models train for
1.3125M gradient steps; this takes roughly 48 hours on 8⇥
A100 GPUs for 256⇥256 StyleGAN2 models. Over the
course of training, our Spatial Transformers process more
than 50M randomly-sampled GAN images.

3This is likely as long as c is properly constrained. When poorly
constrained, c may correspond to an out-of-distribution image and hence T
may not be used to processing images similar to sampled y. Indeed, for our
In-The-Wild CelebA model where N = 512 (i.e., c is not constrained at
all), we find recursion is unstable. For all LSUN models where N 5, we
find it helps significantly.

Inference. In this section, we briefly discuss runtime com-
parisons between GANgealing and supervised baselines.
We compare the time to perform the cartoon cat face aug-
mented reality application online (batch size of 1, RTX 6000
GPU). This involves propagating over 3.9 million points
every frame. GANgealing runs at 15 FPS, CATs [14] at 13
FPS, and RAFT [75] at 3 FPS. For time to perform keypoint
transfers between pairs of images (SPair Cats), GANgealing
runs at 31 pairs per second, and CATs runs at 70 pairs per
second. We note that we did not optimize our implementa-
tion for inference, and so we expect it is possible to further
improve performance.

I. Broader Impacts
As with all machine learning models, our Spatial Trans-

former is only as good as the data on which it is trained. In
the case of GANgealing, this means our algorithm’s success
in finding correspondence depends on the underlying gen-
erative model which generates its training data. Concern
over GANs’ tendency to drop modes is well-documented
(e.g., [9]). However, as latent variable generative models
continue to improve—including efforts to improve mode
coverage—we expect that GANgealing will improve as well.

J. Assets
• Cat Batman Mask

• Bird Soldier

• Rudolph Dog

• CelebA Pokémon Tattoo 1

• CelebA Pokémon Tattoo 2

• Unicorn Horn

• Horse Saddle

• Car Dragon Decal

Acknowledgements. We thank Tim Brooks for his an-
tialiased sampling code and helpful discussions. We thank
Tete Xiao, Ilija Radosavovic, Taesung Park, Assaf Shocher,
Phillip Isola, Angjoo Kanazawa, Shubham Goel, Allan Jabri,
Shubham Tulsiani and Dave Epstein for helpful discussions.
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE 2146752. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation. Additional
funding provided by Adobe and Berkeley Deep Drive.

