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Figure 1. Comparison of real rendering and scattering-based rendering near depth discontinuities. By changing the relative positions
of foreground plane (red) and background plane (blue), one can derive 8 different cases: 4 for foreground rendering; 4 for background
rendering. Rendered result of the center pixel (the black dot) is the integration of its neighbor pixels on red gradient foreground plane and
those on blur gradient background plane.

This document includes the following contents:

1. Extended discussion on error analysis for scattering-
based rendering.

2. Algorithm implementations, including the error map
generation, the scattering-based rendering method, and
the dilated defocus map generation.

3. Synthesis of the training data.

4. Sensitivity experiments of the hyperparameters δ1 and
δ2 used in the error map generation.

5. The role of the dilated defocus map in IUNet.

6. Details of the user study.

7. Additional experiments, including the comparison of
fusion with error map and CNN-based fusion, and the
comparison of fusing with different classical methods.

8. More qualitative comparisons with other methods.

1. Extended Discussion on Error Analysis

We show the complete 8 rendering cases in Fig. 1. In
each case, we take the center pixel (the black dot) as an
example and visualize the results of real rendering and
scattering-based rendering. Since in the real rendering,
there may be widespread occluded areas involved, e.g.,
Fig. 1 (b), which are hard to estimate, a common practice
is to assume the surface is symmetric around the pixel of
interest [1, 9]. In this way, (b), (c), (f), (g) are equivalent to
(a), (d), (e), (h), respectively. Thus, the aforementioned 8
cases can be simplified into 4 cases, i.e., (a), (d), (e), (h).

1.1. Numerical Analysis

In the following, we will calculate the color difference
between the real rendering result and the scattering-based
rendering result for the simplified 4 cases. Note that all un-
defined mathematical symbols are annotated in Fig. 2.

Case of Fig. 2 (a). Real rendering area of the foreground is
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Figure 2. Simplified 4 rendering cases from Fig. 1 and corresponding graphs of the color difference between real rendering and scattering-
based rendering. Subscript i for all symbols in the graphs denotes the pixel being processed. In this example, it denotes the center pixel
(the black dot).
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where za and zb are the depths of the foreground and the
background. zf is the refocused depth. Since rb > ra, we
can further derive
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Considering the energy conservation, the weight of each
pixel should be divided by the square of its blur radius dur-
ing the fusion. Assume the foreground color is ca and the
background color is cb, the real rendering result is
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The scattering-based rendering result is
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Therefore, the color difference between the real rendering
result and the scattering-based rendering result is
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∣∣B∗ −B
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We can derive that while m = 0, n = π
2 , the maximum

value of the color difference is obtained.
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We can also derive that at this moment,
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Following this formulation, we can calculate the color dif-
ference of other 3 cases.
Case of Fig. 2 (d). The color difference is
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Case of Fig. 2 (e). The color difference is
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Case of Fig. 2 (h). The color difference is
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Algorithm 1: Error map calculation
Input: Depth boundary mask M , gradient maps Gx, Gy ,

gradient magnitude map G, signed defocus map
S, hyperparameters δ1, δ2

Output: Error map E∗

1 E∗ ← [0] ;
2 for pi ← TraverseImage(M) do
3 if Mi > 0 then
4 (pi+ , pi−)← Sample(pi, G

x
i , G

y
i , Gi) ;

5 ri+ ← |Si+ | ;
6 ri− ← |Si− | ;
7 rmin ← min (ri+ , ri−) ;
8 rmax ← max (ri+ , ri−) ;
9 for pj ← TraverseNeighbor(pi, rmax) do

10 α← lij
rmax

;
11 β ← rmin

rmax
;

12 eij ← (1−αδ1) · ( 1
2
+ 1

2
tanh (10(δ2−β))) ;

13 E∗
j ← max (E∗

j , eij) ;
14 end
15 end
16 end

1.2. Graphical Analysis

We first define two variables by
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, β =
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For the case of Fig. 2 (a) and (e), as ra < rb, we can infer
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Similarly, for the case of Fig. 2 (d) and (h), as ra > rb, we
can infer

la
ra

= α ,
la
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=
α

β
. (29)

According to Eqs. (2), (6), (9), (10), (14), (17), (20), (23),
(28) and (29), we can further represent H by α and β. As
the explicit expression is complicated, we use the method of
exhaustion to calculate H under different α and β for the 4
simplified cases, and draw their graphs in Fig. 2. Note that
we assume |ca− cb| = 1 in visualization of the graphs. One
can observe that for each case, the maximum value of H is
consistent with the conclusion we derived in Sec. 1.1.

2. Algorithm Implementations
2.1. Error Map Generation

The target error map E∗ can be represented as the spa-
tially variant dilation of the depth boundary mask. In detail,



Algorithm 2: Pixel-wise scattering-based render-
ing method

Input: All-in-focus image I , signed defocus map S,
gamma value γ

Output: Bokeh image Bcr

1 I ← (I)γ ;
2 W ← [0] ;
3 C ← [0] ;
4 for pi ← TraverseImage(I) do
5 ri ← |Si| ;
6 for pj ← TraverseNeighbor(pi, ri) do
7 wij ← 0.5+0.5 tanh (4(ri−lij))

ri2+0.2
;

8 Wj ←Wj + wij ;
9 Cj ← Cj + wij · Ii ;

10 end
11 end

12 Bcr ←
C

W
;

13 Bcr ← (Bcr)
1
γ ;

given a disparity map D, we use the Sobel operator to get
the gradient maps Gx and Gy and the gradient magnitude
map G. Then, the depth boundary mask M can be calcu-
lated by

M = 1(G > ζ) , (30)

where ζ is a threshold. For each pixel pi = (xi, yi) in
the one-filled areas of M , we sample 2 neighbor pixels
pi+ = (xi+ , yi+) and pi− = (xi− , yi−) along the gradient
direction by

xi+ =

[
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i

Gi

]
, yi+ =

[
yi +
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i

Gi

]
, (31)

and
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]
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[
yi −
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i

Gi

]
, (32)

where the bracket represents the round function. According
to Eq. (5) in the main paper, we can further calculate the di-
lation weight eij from pixel pi to its neighbor pixel pj , and
update E∗

j to eij if eij > E∗
j . The whole generation process

is described in Alg. 1, where function Sample() is equiva-
lent to Eqs. (31) and (32). Function TraverseImage() is
used to traverse all pixels of the image M , while function
TraverseNeighbor() is used to traverse the neighbors of
the processing pixel pi within the range of [−rmax , rmax ]
in both x-direction and y-direction.

2.2. Scattering-based Rendering Method

We implement the classical renderer by a pixel-wise
scattering-based rendering method. In Alg. 2, we assume
the aperture shape is circular. Starting from an all-in-
focus image I , a corresponding signed defocus map S, and

Algorithm 3: Dilated defocus map calculation
Input: Signed defocus map S
Output: Dilated defocus map Sd

1 Sd ← S ;
2 for pi ← TraverseImage(I) do
3 ri ← |Si| ;
4 for pj ← TraverseNeighbor(pi, ri) do
5 sij ← 1

( lij
ri

< 1
)
· Si ;

6 Sd
j ← max (Sd

j , sij) ;
7 end
8 end

gamma value γ, we first apply gamma transformation [4]
to transform I to linear space. Two accumulation buffers
W and C are zero-initialized. We traverse all pixels of I
by function TraverseImage(). The blur radius ri can be
calculated by the absolute value of Si. Then we traverse the
neighbor pixels of pi by function TraverseNeighbor().
In the inner loop, we first calculate the weight wij from pi
to neighbor pixel pj . For pi, it can only scatter to pj if ri
is larger than the distance lij between pi and pj . Here, we
use a soft version in the calculation of the weight wij to
produce bokeh balls with smooth and natural boundaries.
wij is additionally divided by the square of ri due to the
uniform distribution of energy. The calculated wij and the
multiplication of wij and intensity Ii are then accumulated
in Wj and Cj , respectively. After traversing all pixels, the
final result Bcr can be obtained by the element-wise divi-
sion of two accumulated buffers and the subsequent inverse
gamma transformation.

To create polygonal aperture shapes, We can multiply ri
in Alg. 2 row 7 by a factor of kij , which is defined by

kij =
sin

(
π
2 − π

n

)
sin

(
π
2 −

π
n+mod

(∣∣ arctan ( lyij
lxij

)
+ϕ

∣∣, 2π
n

)) , (33)

where lxij and lyij are the horizontal and vertical component
of distance lij . n denotes the number of aperture blades and
ϕ controls the rotation angle of polygonal bokeh balls.

2.3. Dilated Defocus Map Generation

Dilated defocus map Sd is used in neural renderer. It
is a spatially variant dilation of the signed defocus map S.
The dilation size depends on the blur radius of each pixel.
The detailed generation of Sd is described in Alg. 3, where
most operations are the same with Alg. 2. As a result, we
can calculate Bcr and Sd in one pipeline for efficiency.

3. Training Dataset
To train BokehMe, we require that each training sam-

ple contains an all-in-focus image, a disparity map and a



All-in-Focus Bokeh (bg) Bokeh (fg)
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Figure 3. An example of the training data. The displayed bokeh
images are synthesized with the following settings: K = 12, γ =
2, df = 0.05 for the second column, and df = 1 for the third
column. We also show the corresponding error maps calculated
by Alg. 1, where δ1 = 4, δ2 = 2

3
.

Table 1. Sensitivity experiments of δ1 and δ2 in the error map
generation. Results are evaluated by PSNR.

δ1

δ2 0 1 / 2 2 / 3 5 / 6 1

0 38.35 38.35 38.35 38.35 38.35
2 38.35 40.80 40.98 40.93 40.39
4 38.35 40.75 41.02 40.48 40.41
6 38.35 40.66 40.75 40.40 40.33
∞ 38.35 40.57 40.70 40.36 40.33

bokeh image with known blur parameter, refocused dispar-
ity, and gamma value. Existing public bokeh datasets, such
as EBB! [3] and Unity [8] cannot meet our requirements,
so we introduce a new synthetic bokeh dataset. The synthe-
sis procedure is as follows: (i) We collect 150 background
images and 300 foreground images with pure color back-
ground from websites. For the foreground images, we ex-
tract their alpha maps by online matting tools. (ii) For each
scene, we randomly choose 36 foreground objects with ran-
dom resizing and color augmentation, and place them on a
background image from back to front according to their dis-
parities. The disparity of the background image is set to a
random plane while the disparity of each foreground object
is set to a random value which is larger than the maximum
disparity of the background. (iii) We use a simplified ray
tracing method to obtain multiple bokeh images with dif-
ferent controlling parameters. We show an example of our
training data in Fig. 3.

4. Sensitivity Experiments of δ1 and δ2

The hyperparameters δ1 and δ2 control the softness and
narrowness of the target error map, which is used to fuse the

All-in-Focus Disparity S-Fuse D-Fuse

Figure 4. Comparison of “S-Fuse” and “D-Fuse” in IUNet. ”S-
Fuse”: fusion with the mask thresholded by the signed defocus
map; ”D-Fuse”: fusion with the mask thresholded by the dilated
defocus map. The rough refocused plane is labelled with a yellow
cross on the disparity map.

results from the physical renderer and the neural renderer.
Here, we analyze the impact of different combinations of
both hyperparameters on the final result. The experiment
is conducted on the BLB dataset (Level 3). Higher δ1 and
δ2 represent the larger available area for the neural renderer.
As shown in Table 1, the best performance is achieved while
δ1 = 4 and δ2 = 2

3 .

5. The Role of Dilated Defocus Map
In IUNet, we use the dilated defocus map instead of the

signed defocus map to produce a mask, and use it to fuse
the output of the neural network and the bilinear upsampled
input bokeh image. The reason is that the negative effects
caused by defocus clipping will spread during the rendering,
especially when the focal plane targets background. We vi-
sualize an example in Fig. 4. One can see that using the
dilated defocus map leads to a more natural color transition
around the object boundary.

6. User Study
We build a website for user study (Fig. 5). For each

scene, we provide an all-in-focus image captured by iPhone
12, a darker image labelling the focal point with a yellow
cross, and the results of different rendering methods dis-
played in a random order. To enable detailed observation,
we provide two magnification windows for the images in
two rows. When the mouse moves over the image, the
magnification window will provide local zoomed viewing.
Participants are required to select one option from “Good”,
“Normal”, and “Bad” for each anonymous method. The fi-
nal comparison is based on the number of votes.

7. Additional Experiments
In this section, all experiments are conducted on the BLB

dataset (Level 3).
Comparison of fusion with error map and CNN-based
fusion. We fuse the results of the classical renderer and
the neural renderer by the predicted error map. It aims to



Figure 5. Interface of the website for user study. We mark the
magnified area with a red arrow.

separate the rendered areas of the two renderers as much as
possible, which can avoid bokeh style confusion, especially
when using a non-circular aperture in the classical renderer.
In addition, we show in Table 2 that this way outperforms
CNN-based fusion quantitatively. The fusion network is
made up of three 3 × 3 convolution layers (32 channels)
with the defocus map and the two rendered results as input.

Comparison of fusing with different classical methods.
We use the scattering-based rendering method as our clas-
sical renderer because it works well in depth-continuous ar-
eas. Although this method causes serious artifacts at depth
discontinuities, these areas will be replaced with the results
of the neural renderer. In contrast, other classical methods
sacrifice the accuracy on depth-continuous areas for more
natural boundary transition, resulting in lower performance
when combining with our neural renderer (Table 3).

8. More Qualitative Results

We show more comparison results with other methods
on 3 test datasets: BLB (Fig. 6), EBB400 (Fig. 7), and IPB
(Figs. 8 and 9). One can observe that BokehMe can remove
boundary artifacts in classical rendering methods and over-
come the limited blur range and poor highlight rendering in
neural rendering methods. Note that Wang et al. [7] claim
that their proposed DeepLens can generate high-resolution
results of arbitrary resolutions. However, the released code
can only handle the image up to 2K. Therefore, for the IPB
dataset with the image resolution of 3024 × 4032, bokeh
images produced by DeepLens are a little blurry within in-
focus areas. In addition, despite being superior to Deep-
Focus [8], DeepLens still lacks a good mechanism to pro-
duce arbitrarily large blur sizes. Two examples are shown
in the first two rows of Fig. 7. DeepLens produces abnor-
mal colors in out-of-focus areas, while our approach main-
tains high-quality rendering. Another thing that should be
noted is that by using disparity augmentation during train-
ing, our approach is able to handle slightly corrupted dispar-
ity boundaries but cannot fix the missing structure. How-

Table 2. Comparison of fusion with error map (Err-fusion) and
CNN-based fusion (CNN-fusion).

Methods CNN-fusion Err-fusion (Ours)

PSNR 40.53 41.02
SSIM 0.9909 0.9915

Table 3. Comparison of fusing with different classical methods.

Methods NR NR+VDSLR [9] NR+SteReFo [2] NR+Scatter (Ours)

PSNR 39.21 40.44 37.12 41.02
SSIM 0.9896 0.9900 0.9872 0.9915

ever, we observe that for most scenes, our rendered results
are natural without obvious artifacts.
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Figure 6. Qualitative results on the BLB dataset. The rough refocused plane is labelled with a yellow cross on the disparity map.



All-in-Focus Disparity VDSLR [9] SteReFo [2] DeepLens [7] DeepFocus† [8] Ours GT

Figure 7. Qualitative results on the EBB400 dataset. “All-in-Focus” and “GT” refer to the wide and narrow DoF images captured by Canon
7D DSLR camera. The rough refocused plane is labelled with a yellow cross on the disparity map predicted by DPT [6].



All-in-Focus Disparity VDSLR [9] DeepLens [7] Ours iPhone 12 Portrait

Figure 8. Qualitative results of user study on the IPB dataset. ”All-in-Focus” refers to the wide DoF image captured by iPhone 12. The
rough refocused plane is labelled with a yellow cross on the disparity map extracted from the captured image by Photopea [5].



All-in-Focus Disparity VDSLR [9] DeepLens [7] Ours iPhone 12 Portrait

Figure 9. Qualitative results of user study on the IPB dataset. ”All-in-Focus” refers to the wide DoF image captured by iPhone 12. The
rough refocused plane is labelled with a yellow cross on the disparity map extracted from the captured image by Photopea [5].
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