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In this Supplementary Material, we provide details and
results omitted in the main text.
• Appendix A: local variations of decision boundaries dur-

ing model extraction (§ 4.2 of the main paper)

• Appendix B: effectiveness of multi-views fingerprints
augmentations (§ 4.3 of the main paper)

• Appendix C: additional ablation studies (§ 5.3 of the
main paper).

• Appendix D: additional results of model accuracy. (§ 5.2
of the main paper)

• Appendix E: additional analyses on the transferability of
encoder. (§ 6 of the main paper)

• Appendix F: discussion on ethical issues. (§ 6 of the
main paper)

A. Local Variations of Decision Boundaries
During Model Extraction

In § 4.2 of the main paper, the visualization of finger-
prints generated using UAP and Local Adversarial Pertur-
bation (LAP) conducted on FashionMNIST dataset shows
that LAP fingerprints are much less distinguishable than
UAP fingerprints. This is because UAP based finger-
prints capture the global information of decision bound-
aries, which is robust to model extraction process, as
demonstrated in § 4.1. In this section, we will show that the
local information representing by LAP based fingerprints is
much less robust because decision boundaries vary signifi-
cantly during model extraction.

To show the variation, we leverage a special kind of
datapoints named borderpoints which are datapoints that
lie on the decision boundary (i.e. {x | argmax1(f(x)) −
argmax2(f(x)) < 1e−6}. As the last layer of DNN is a
compact space, we can easily find such border points using
dichotomy (i.e. for any xi in class Ci and any xj in class
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Figure A. Distributions of prediction gap of borderpoints on piracy
models.

Cj , there exists λ ∈ [0, 1] that λ ∗xi+(1−λ) ∗xj is a bor-
derpoint). These borderpoints are used to query the piracy
model of f and Figure A reports the differences between
the largest confidence value and the second largest confi-
dence value of piracy models on borderpoints. As shown in
Figure A, the gap between the confidence value of the most
probable class and the value of the second probable class is
significant, indicating that borderpoints are far away from
decision boundaries of piracy models. In this way, we show
the variance of decision boundaries during model extraction
quantitatively.

B. Effectiveness of Multi-views Fingerprints
Augmentations

In § 4.3 of the main paper, we propose a data augmenta-
tion strategy which forms multiple views for one fingerprint
and then use them to train the contrastive encoder. In this
section, we verify the effectiveness of this strategy by prov-
ing that among all the positives (i.e., samples belongs to the
same class), those generated views of a specific fingerprint
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(a) Similarity distribution (b) Visualization of fingerprints

Figure B. (a) The left curve is the similarity between a fingerprint
and its views, the right curve is the similarity between a finger-
prints and its positives excluding views; (b)Visualization of fin-
gerprints: red points are views generated from a single fingerprint
and blue points are other positives with red points.

are the most similar to itself.
The similarities s between views and positives are mea-

sured by cosine similarities. Figure Ba reports the similari-
ties between a pair of views and a pair of positives. We con-
clude that compared with positives, views are more similar
with each other which is satisfied with our design choice.
The graph in Figure Bb shows the distances between a pair
of fingerprints measured by the reciprocal of their similari-
ties d = (1/s) which reveals the same results.

C. Additional Ablation Studies

C.1. Contrastive Loss

In this section, we aim at presenting the role of con-
trastive learning in encoder training. Recall that contrastive
learning can distinguish the differences between homolo-
gous models and piracy models (i.e., the representation vec-
tor of homologous models will be distant from the victim
model whereas that of piracy models will be close to the
victim model). This distance property in the latent space al-
lows us to stably verify the similarity between two models
and detect piracy models with high confidence.

To understand how well can contrastive learning based
encoder differentiates models, we visualize the distribution
of the representation vector of each fingerprint in the last
layer of encoder and we compare the case of contrastive en-
coder with that of normal auto-encoder. Figure C is t-SNE
visualization about the representation vector of fingerprints
where each group of points with different colors represents
one type of fingerprint. Figure Ca demonstrates the results
of a contrastive learning based encoder. The representation
vectors of the victim model (blue) are entangled with that of
piracy models (orange) and lie on the left side of this hyper-
sphere while the homologous models (green) lie on the op-
posite side. This is exactly what we expected because there
exists an obvious decision boundary in Figure Ca that can
easily split those three clusters into two parts. In contrast,
Figure Cb shows the results of a non-contrastive encoder
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Figure C. t-SNE visualization of representation vector outputted
by the encoder of three types of fingerprints (FMNIST). Con-
trastive learning based encoder (left) can better differentiate ho-
mologous models from piracy models and can better mix piracy
models with the victim model than non-contrastive encoder (right).
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Figure D. Influence of the Overlapping rate between Dv and
Dhomo on similarities of homologous models and the victim
model.

(i.e., auto-encoder). As we can see, although each type of
fingerprint is separated (recall that UAP based fingerprint it-
self is separable without any post-processing), the distances
of any two points from different clusters variant. Besides,
the representation vectors of victim’s fingerprints and that
of piracy models do not have any overlap. We thus con-
clude that the contribution of contrastive learning is vital in
achieving nearly perfect detection rate.

C.2. Datasets Overlapping

In § 5.2 of the main paper, we give the implementa-
tion details about the training process of victim model, ho-
mologous models and piracy models. In this section, we
will report the influence of the overlapping rate between
the dataset of victim models and the dataset of homologous
models with respect to the performance of our verification
mechanism. Note that we are only interested in the over-
lapping rate between Dv and Dhomo rather than Dv and
the dataset of piracy models Dpir, as the data augmentation
technology used in the model extraction process makes it



hard to measure their overlapping rate.
Intuitively, a homologous model trained on Dhomo

which overlaps more with Dv will assemble more the vic-
tim model and will be more difficult to be distinguished. A
worth-trusty verification mechanism, however, need to be
indifferent to such interference. To measure the effect of
overlapping rate on our mechanism, we trained 20 homol-
ogous models with overlap rates ranging from 0 to 0.9 and
calculated their similarities with fV,u. Our experimental re-
sults in Figure D on FMNIST show that the overlapping
rate does not undermine the performance of our verification
mechanism. Which indicates our approach is effectinve on
different datasets overlaps.

D. Model Accuracy
In this section, we present the accuracy on testset of all

models used in our experiments in Table A as a supplement
to § 5.2 of the main paper.

E. Transferability of Encoder
In § 4.3 of the main paper, the defender needs to train

several homologous models and several piracy models in or-
der to train an encoder which satisfies the detection demand.
To ease the burden of defenders, in this section, we aim to
verify one hypothesis: can an encoder trained for a specific
victim model fV,v1 be used to protect another independent
victim model fV,v2

. Notice that fV,v1 is independent from
fV,v2 .

We evaluate this hypothesis on the FashionMNIST
dataset. Specifically, given two independent victim models
fV,v1 and fV,v2 , e.g., fV,v2 is a homologous model of fV,v1 ,
we train an encoder Ev1 for fV,v1 to protect its ownership
via our framework. To test the transferability of this en-
coder, we additionally prepare 10 homologous models and
10 piracy models for fV,v2 as well as its UAP. By far, we
can generate three types of fingerprints for fV,v2

, i.e., the
fingerprints of itself, its homologous models’ fingerprints
and its piracy models’ fingerprints and we employ Ev1 to
project these fingerprints to the representation space.

As demonstrated in Figure Ea, UAP based fingerprints
are naturally separable, which unites with aforementioned
experimental results. More importantly, as Figure Eb
shown, after the projection of the encoder Ev1 , which is
trained for another independent victim model, we observe
that homologous fingerprints are indeed distant from the
victim, whereas the piracy fingerprints are entangled with
that of the victim. The distances of any two points be-
long to different clusters are maintained on most pairs of
points. The average similarity sim(fpir, fV,v2) for mea-
suring the IP violation equals 0.85 and the average similar-
ity sim(fhomo, fV,v2) for independent models equals 0.33.
However, the similarity gap reduces slightly compared with
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Figure E. t-SNE visualization of fingerprints of three types of mod-
els associated with fV,v2 and their representation vector outputed
by the encoder which is associated with fV,v1 (FMNIST).

the specific encoder that trained to protect itself (i.e., fV,v2 )
and we claim that there is still space to improve the trans-
ferability of encoder in future work.

F. Ethical Considerations
This work is mainly a defense paper against model ex-

traction attacks and it is hardly misused by ordinary peo-
ple. In the worst case, an honest-but-curious adversary may
adopt this technique to involve a normal MLaaS provider
in a lawsuit that is destined to lose. This concern can be
eliminated by deploying a trustworthy third party to audit
the argument.

This work does not collect data from users or cause po-
tential harm to vulnerable populations. It may arise con-
cerns that the query data used by the defender reveal cer-
tain information about membership of their training dataset.
Fortunately, in our work, the query data do not need to be-
long to the user’s original dataset, which means that the de-
fender can collect auxiliary data that fall in the problem do-
main as their query data.

The other concern is that, although our verification
framework can achieve a nearly perfect accuracy with an
AUC score of 1.0, we still need to pay attention to the neg-
ative impact caused by its false positive cases. Further evi-
dence collected by social engineering can be applied as aux-
iliary evidence during the confirmation process to avoid the
hardly appeared false positive cases mentioned above.



Table A. Accuracy of models of different architectures on different datasets. The values before brackets are the average and the values
in brackets are STD. Arc.A and ResNet18 are chosen to be architecture of the victim model, so only one model of this architecture is
generated.

FashionMNIST CIFAR10 TinyImageNet
Architecture Normal Training Extraction Architecture Normal Training Extraction Normal Training Extraction

Arc A 0.8978 ResNet18 0.8929 0.4768
Arc B 0.8562(0.0314) 0.8786(0.0125) ResNet34 0.8956(0.0034) 0.8918(0.0010) 0.4754(0.0582) 0.4354(0.0040)
Arc C 0.9102(0.0529) 0.8733(0.0071) VGG16 0.9232(0.0021) 0.8860(0.0009) 0.4952(0.0520) 0.4392(0.0076)
Arc D 0.8648(0.0143) 0.8698(0.0057) GoogLeNet 0.9185(0.0057) 0.9075(0.0007) 0.4561(0.0298) 0.3520(0.0232)
Arc E 0.8805(0.0223) 0.8845(0.0067) DenseNet 0.9185(0.0057) 0.8962(0.0012) 0.5406(0.0305) 0.4114(0.0105)


	. Local Variations of Decision Boundaries During Model Extraction
	. Effectiveness of Multi-views Fingerprints Augmentations
	. Additional Ablation Studies
	. Contrastive Loss
	. Datasets Overlapping

	. Model Accuracy
	. Transferability of Encoder
	. Ethical Considerations

