
A. Algorithm Overview

Algorithm 1: HyperSegNAS Training
Networks: image encoder: M, Meta-Assistant

Network: H, super-net: F
Input: sampled input image: Ii ∈ R96×96×96,

sampled architecture: ai ∈ NL×E×O,
ground truth: Sgt ∈ N96×96×96, total layers:
L = 12, total edges between columns:
E = 10, total operations: O = 2, super-net
training iter.: N1 = 160000, annealing
training iter.: N2 = 20000

Output: segmentation mask: S ∈ N96×96×96

for i = 1 to N1 do
limage = M(Ii)
larch = flatten(ai)

ωai,Ii
Hθ

= H(larch ⊕ limage)

ωactive = ωai,Ii
Hθ

(l, e, c) ∗ ωa(l, e, c)
S = F(Ii; ai, ωactive)
Ltrain(S, Sgt) = Ldice(S, Sgt) + Lce(S, Sgt)
ωactive := ωactive − α δLtrain

δωactive

end
for i = 1 to N2 do

limage = M(Ii)
larch = flatten(ai)

ωai,Ii
Hθ

= H(larch ⊕ limage)

λ = i
N2

ωactive = (λωfixed + (1− λ)ωai,Ii
Hθ

) ∗ ωa)
S = F(Ii; ai, ωactive)
Ltrain(S, Sgt) = Ldice(S, Sgt) + Lce(S, Sgt)
ωactive := ωactive − α δLtrain

δωactive

end

We provide a detailed description of the training pipeline
for HyperSegNAS in Algorithm 1, which includes training
the super-net with H in N1 iterations and annealing away
H in N2 iterations. For clarity, we denote the super-net
as F(∗; a, ωa), where the forward function involves the in-
ferenced architecture and the corresponding weights. The
flatten(∗) function converts the one-hot architecture matrix
a ∈ NL×E×O to the vector larch ∈ NL·E , where each ele-
ment in larch indicates either inactive, a skip connection, or
a 3× 3× 3 convolution. Training loss is based on an equal
combination of dice and cross-entropy loss. The super-
net training schedule is similar to DiNTS [16], where we
use 1000 iterations for warm-up, during which the learning
rate α linearly increases from 0.025 to 0.2. After warm-up,
learning rate decreases by half at 20%, 40%, 60%, and 80%
of N1. During annealing, the learning rate is fixed at 0.0016.
Similarly, during quick fine-tuning over individual architec-
tures, learning rate is fixed at 0.0016. The architectures are

fine-tuned over 5000 iterations.

B. Network Architecture

We provide the network architectures of the image en-
coder M and the Meta Assistant Network (MAN) in Table 4
and Table 5. In the network tables, Nc denotes the number
of output channels, C ′ denotes the channel dimension of
generated features FLR. We use ‘K#-C#-S#-P#’ to denote
the configuration of the convolution layers, where ‘K’, ‘C’,
‘S’ and ‘P’ stand for the kernel, input channel, stride and
padding size, respectively.

Name Nc Description
INPUT 1 Input I
CONV0 16 K3-C1-S2-P1
IN InstanceNorm3d
RELU
CONV1 32 K3-C16-S2-P1
IN InstanceNorm3d
RELU
CONV2 64 K3-C32-S2-P1
IN InstanceNorm3d
RELU
CONV3 128 K3-C64-S2-P1
IN InstanceNorm3d
RELU
CONV4 256 K3-C128-S2-P1
IN InstanceNorm3d
RELU
CONV5 256 K3-C256-S1-P0
RELU

Table 4. Network architecture of M.

Name Nc Description
INPUT 378 Input larch ⊕ limage
FC0 2048 C378
RELU
FC1 4096 C2048
RELU
FC2 8192 C4096
RELU
FC3 16384 C8192
RELU
FC4 27648 C16384
SIGMOID

Table 5. Network architecture of H.



(a) ωa,I
Hθ

at layer l = 1 on background patches. (b) ωa,I
Hθ

at layer l = 1 on foreground patches.

(c) ωa,I
Hθ

at layer l = 4 on background patches. (d) ωa,I
Hθ

at layer l = 4 on foreground patches.

(e) ωa,I
Hθ

at layer l = 12 on background patches. (f) ωa,I
Hθ

at layer l = 12 on foreground patches.

Figure 7. Visualization of ωai,Ii
Hθ

generated from H. The weights within the green regions correspond to the highest resolution features,
F l
↓2, the blue region corresponds to weights for F l

↓4, the yellow region corresponds to weights for F l
↓8, and the red region corresponds to

weights for F l
↓16. Clear differences can be observed between weights generated from foreground and background patches.

C. HyperNet Weights Visualization

We provide additional visualizations on ωai,Ii
Hθ

generated
from H. There are L = 12 layers in our search space, and
each layer contains E = 10 possible edges each with differ-
ent channel numbers depend on the feature resolution. We
select eight image patches from a single volume, four of
which are background and the rest four are foreground. We
record the corresponding ωai,Ii

Hθ
and plot the weight values

in layer {1, 4, 12} in Fig. 7. The weights are plotted follow-
ing the order of the feature resolutions. We can make sev-
eral observations: (1) weights in different layers have dif-
ferent distributions; (2) weights generated from background
image patches are similar to each other within the same

layer; (3) weights generated from foreground image patches
are different to each other and to the background patches,
within the same layer. This observation indicates that H
learns an efficient channel-weighting mechanism that can
differentiate foreground and background. We also observe
that the weights for low-resolution features tend more to-
wards 0.5, which may imply that these features are less im-
portant to learning due to their scale. We also observe that
the weights of low-resolution feature tends to be 0.5, which
may imply that these features are less important for learn-
ing due to their scale. Finally, it is possible to increase the
sensitivity to foreground labels by modifying ωai,Ii

Hθ
, which

may be interesting for future investigations.


