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Abstract

Depth estimation is solved as a regression or classifica-
tion problem in existing learning-based multi-view stereo
methods. Although these two representations have recently
demonstrated their excellent performance, they still have
apparent shortcomings, e.g., regression methods tend to
overfit due to the indirect learning cost volume, and clas-
sification methods cannot directly infer the exact depth due
to its discrete prediction. In this paper, we propose a novel
representation, termed Unification, to unify the advantages
of regression and classification. It can directly constrain the
cost volume like classification methods, but also realize the
sub-pixel depth prediction like regression methods. To exca-
vate the potential of unification, we design a new loss func-
tion named Unified Focal Loss, which is more uniform and
reasonable to combat the challenge of sample imbalance.
Combining these two unburdened modules, we present a
coarse-to-fine framework, that we call UniMVSNet. The
results of ranking first on both DTU and Tanks and Temples
benchmarks verify that our model not only performs the best
but also has the best generalization ability.

A. More Explanation of Unified Focal Loss

As shown in Equation (9), the dedicated function to con-
trol the range of scaling factor is designed as the sigmoid-
like function as:

Sb(x) =
1

(1 + b−x)
(a)

where x = |q−u|
q+ in this paper and its range is [0,+∞),

therefore, the range of Sb(x) is [0.5, 1). As aforementioned,
we adopt an asymmetrical scaling strategy to protect the
precious positive learning signals and scale the range of S+

5

to [1, 3) and S−5 to [0, 1). The detailed implementation of
S+
5 is:

S+
5 (x) = 4× (

1

1 + 5−x
− 0.5) + 1 (b)

and the detailed implementation of S−5 is:

S−5 (x) = 2× (
1

1 + 5−x
− 0.5) (c)

B. Finer DTU Ground-truth

As mentioned in our main paper, we adopt the finer
ground-truth to train our model additionally for a fair com-
parison with the start-of-the-art methods [3]. The re-
finement of each DTU ground-truth is achieved by cross-
filtering with its neighbor viewpoints. For convenience, we
directly adopt the processed results provided in [3], and we
only adopt the mask which indicates the validity of each
point. Concretely, we adopt the union of the mask provided
in [1,4] and the up-sampled mask provided in [3] as the final
mask.

C. More Ablation Studies on DTU Dataset

Here, we perform more ablation studies on DTU to show
you more information about our implementation.

Figure A. The statistics of scaling factor x = |q−u|
q+

in Eq. (8).

The scaling factor in UFL. The range of scaling factor
in Eq. (8) is [0,+∞). We count the average number and
sum of scaling factors that fall in different intervals. As
shown in Fig. A, most of the scaling factors are less than 4
(Left figure). Even though, those small fractions of larger
scaling factors take more weight (Right figure). This re-
sults in those abnormally large scaling factors occupying
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the model’s training, and lead to difficulty in model conver-
gence and extremely poor performance. Therefore, we in-
troduce a dedicated function to control the scaling factors’
range.
The dedicated function in UFL. As described in our main
paper, we design the positive dedicated function as Eq. (b)
and negative dedicated function as Eq. (c). In fact, this final
implementation is confirmed under our more experimental
results. As shown in Tab. A, compared to adopting a com-
mon sigmoid function with a base e, it’s better to use a ded-
icated function with a base 5. Meanwhile, scaling the range
of dedicated function to [1, 3) is better than [1, 2). As shown
in Fig. B, the base number controls the speed at which the
function converges to the maximum value. The smaller the
base number, the slower the convergence. In our experi-
ments, we found that most of the points whose x = |q−u|

q+ is
in the interval [0, 4], so the scaling value calculated by the
dedicated function needs to be distinguishable for the points
in this interval, and we set b = 5 in this paper. To be hon-
est, we have only conducted a limited number of the base
number the range of dedicated function as shown in Tab. A
due to the time and resource considerations, and we believe
there will be more powerful configurations.

Base Number Range ACC.(mm) Comp.(mm) Overall(mm)
e [1, 2) 0.354 0.282 0.318
5 [1, 2) 0.354 0.280 0.317
5 [1, 3) 0.352 0.278 0.315

Table A. Ablation results of dedicated function. While the base
number is ablated for both the positive and negative dedicated
function, we only ablate the range of positive dedicated function.

The tunable parameter in UFL. Tunable parameters in
UFL like α and λ are also important for rebalancing sam-
ples. As mentioned in our main paper, we always set
α+ = 1 to protect the positive learning signals and con-
figure other tunable parameters stage by stage due to the
different number of depth hypotheses. In our implementa-
tion, we set the number of depth hypotheses to 48, 32, and
8 from stage1 to stage3. Apparently, the sample imbalance
in stage1 is the most challenging, while it’s the most relax-
ing or even negligible in stage3. As shown in Tab. B, ap-
plying the same configuration across all stages performs the
worst which indicates that the imbalances faced by different
stages are different.
Proximity VS . Offset. Different from the Regression and
Classification, we propose Unification to classify the opti-
mal depth hypothesis and regress its offset to ground-truth
depth simultaneously. As shown in Fig. C, there are two
ways to regress the offset. The first is to predict proximity
which is the complement of the offset and is also the method
we adopt in this paper. The second is to directly estimate the

Figure B. The scaling value obtained through the positive ded-
icated function under different base numbers.

α− λ ACC.(mm) Comp.(mm) Overall(mm)stage1 stage2 stage3 stage1 stage2 stage3
0.75 0.75 0.75 2 2 2 0.347 0.325 0.336

1 1 1 2 1 0 0.366 0.282 0.324
0.75 0.50 0.25 2 1 0 0.353 0.287 0.320

Table B. Ablation results of tunable parameters. These exper-
iments are conducted on the model with only our Unification and
UFL, and don’t adopt the finer DTU ground-truth or adaptive ag-
gregation.
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Figure C. Two available solutions to generate Unity (supervised
signal) from the ground-truth depth. For proximity, we use the
interval above the depth hypothesis as its regression interval, and
for offset, use the area where the depth hypothesis is the median
value as the regression interval.

offset. The comparison results between them are shown in
Tab. C. We can see that adopting proximity to regress the
offset indirectly is much more powerful than purely using
offset. As mentioned in our main paper, our Unification can
be decomposed into two parts: classify the optimal depth
hypothesis first and then regress the proximity for it. We
infer that the reason why proximity is better than offset is
the positive relationship between the magnitude of proxim-
ity and the quality of the classified optimal depth hypothesis
in the first step. Meanwhile, we think that there should be
better settings to improve the performance of using offset,
but we have not made more attempts here.



Method ACC.(mm) Comp.(mm) Overall(mm)
Offset 0.429 0.336 0.383

Proximity 0.372 0.282 0.327

Table C. Comparison of proximity and offset. These experi-
ments are conducted on the model only using our Unification.

D. More Comparisons between Unification,
Classification and Regression

(1) Regression methods are harder to converge and have
a greater risk of overfitting due to its indirect learning strat-
egy, which has been studied in [5]. Meanwhile, they tend to
generate smooth depth in object boundaries, because they
treat the depth as the expectation of the depth hypothe-
ses. However, they can achieve sub-pixel depth estima-
tion, therefore, they have better accuracy. (2) Classification
methods cannot generate accurate depth due to their dis-
crete prediction, but they constrain the cost volume directly
and achieve better completeness. (3) Our unification is ex-
actly the complement of these two approaches. Take the
essence, get rid of the dross. On the one hand, We directly
constrain the cost volume to keep the model robust and pick
the regression interval with the maximum unity to maintain
the sharpness of the object boundary. On the other hand,
we regress the proximity in the picked regression interval to
generate accurate depth. Therefore, our unification is hoped
to achieve regression’s accuracy and classification’s com-
pleteness. The results shown in Tab. 3 just prove this.

E. Limitation

As aforementioned, there are several tunable parameters
in our Unified Focal Loss that will affect performance. The
process of finding a satisfactory parameter configuration is
a cumbersome challenge for newcomers. On the other hand,
as long as we have a sufficient understanding of Focal Loss
[2], this process will become handy. Anyway, an adaptive
form or a form with fewer parameters will be a more concise
and efficient choice.

F. More Results on DTU Dataset

Figure D shows our additional point clouds reconstruc-
tion results. It can be seen that the point cloud reconstructed
by our method has excellent accuracy and completeness.
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Figure D. More qualitative results on DTU dataset.
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