
Supplementary: Semantic-Aware Domain Generalized Semantic Segmentation

In this supplementary, additional information is provided
as following five aspects:

A. comprehensive evaluation on other DG settings;
B. comparison with Domain Adaptation methods;
C. detailed framework structure and implementations;
D. discussion on computational complexity;
E. additional visualization of semantic segmentation.

Appendix A. Evaluation on other DG settings

Existing DG methods [3, 11–13, 20] only focus on three
domain generalization settings, i.e. (1) G → C, B, M, & S;
(2) S → C, B, M, & G and (3) C → G, S, B, & M while los-
ing the sight of the other two DG settings: (4) B → G, S, C,
& M and (5) M → G, S, C, & M. However, recently several
studies [2, 6] stress the importance of the last two settings.
Therefore, we consider a more comprehensive evaluation
which performs generalization from each of them. Results
on the last two settings are reported in Tab. 1, suggesting
that our model consistently achieves the state-of-the-art re-
sults on all settings and backbones.

Table 1. Performance comparison in terms of mIoU (%) between
DG methods. The best and second best results are highlighted
and underlined, respectively. † denotes our re-implemention of the
respective method. G, C, B, M and S denote GTA5, Cityscapes,
BDDS, Mapillary and SYNTHIA, respectively.

Methods Backbone Train on BDDS (B) Train on Mapillary (M)
→G →S →C →M →G →S →C →B

Baseline 25.30 21.08 38.76 23.48 25.34 22.16 36.13 24.17
IBN† [11] 29.47 26.40 39.72 26.12 29.68 26.31 41.39 29.48
SW† [12] 27.10 25.23 39.54 25.67 28.70 25.57 39.66 28.37

DRPC† [20] VGG-16 32.83 28.06 40.17 29.00 31.53 28.03 45.15 30.46
GTR† [13] 32.75 27.63 41.06 29.71 32.67 27.32 44.47 31.83
ISW† [3] 32.60 28.58 42.21 30.54 32.65 28.44 45.68 32.06

Ours 34.11 30.13 44.62 32.06 33.86 30.67 47.51 33.07

Baseline 26.12 21.65 39.03 23.87 25.46 23.41 36.79 26.37
IBN† [11] 28.97 25.42 41.06 26.56 30.68 27.01 42.77 31.01
SW† [12] 27.68 25.37 40.88 25.83 28.47 27.43 40.69 30.54

DRPC† [20] ResNet-50 33.19 29.77 41.30 31.86 33.04 29.59 46.21 32.92
GTR† [13] 33.25 30.61 42.58 30.73 32.86 30.26 45.84 32.63
ISW† [3] 32.74 30.53 43.50 31.57 33.37 30.15 46.43 32.57

Ours 34.75 31.84 44.94 33.21 34.01 31.55 48.65 34.62

Baseline 25.84 24.62 42.06 24.70 26.81 23.74 39.68 27.19
IBN† [11] 30.28 29.06 44.92 29.90 32.07 28.83 44.89 30.27
SW† [12] 28.34 26.74 44.28 27.58 30.31 24.06 42.33 28.65

DRPC† [20] ResNet-101 34.13 31.75 46.73 32.63 36.40 30.27 46.16 32.17
GTR† [13] 35.26 31.98 45.34 33.27 34.65 29.56 47.68 33.98
ISW† [3] 34.87 32.89 46.15 34.17 35.53 30.92 48.54 34.02

Ours 37.56 33.83 48.32 35.24 37.72 32.63 50.07 35.79

Appendix B. Comparison with DA methods

Domain Adaptation (DA) methods require access to the
target domain to solve domain shift problems. In contrast,
our method is designed in Domain Generalization (DG)
manner for broad generalization to totally unseen domains
without accessing any target domain data. Therefore, the

Table 2. Comparison results between ours and Domain Adapta-
tion methods on GTA5→Cityscapes. DA and DG denote Domain
Adaption and Domain Generalization respectively.

Backbone Task Method Access Tgt mIoU

VGG-16 DA

FCN wild [6] � 27.1
CDA [21] � 28.9

CyCADA [5] � 34.8
ROAD [1] � 35.9

I2I [9] � 31.8
AdaptSegNet [14] � 35.0

SSF-DAN [4] � 37.7
DCAN [18] � 36.2
CBST [22] � 30.9
CLAN [8] � 36.6

ADVENT [16] � 36.1
DPR [15] � 37.5
BDL [7] � 41.3
FDA [19] � 42.2

DG Ours × 38.2

Resnet-101 DA

CyCADA [5] � 42.7
ROAD [1] � 39.4

I2I [9] � 35.4
AdaptSegNet [14] � 41.4

DCAN [18] � 41.7
CLAN [8] � 43.2

ADVENT [16] � 43.8
DPR [15] � 46.5

IntraDA [10] � 46.3
DADA [17] � 47.3

DG Ours × 45.3

Table 3. Comparison results between ours and Domain Adaptation
methods on SYNTHIA→Cityscapes.

Backbone Task Method Access Tgt mIoU

VGG-16 DA

FCN wild [6] � 20.2
CDA [21] � 29.0
ROAD [1] � 36.2

DCAN [18] � 35.4
CBST [22] � 35.4

ADVENT [16] � 31.4
DPR [15] � 33.7
BDL [7] � 39.0
FDA [19] � 40.5

DG Ours × 37.4

Resnet-101 DA

ADVENT [16] � 40.8
DPR [15] � 40.0

IntraDA [10] � 41.7
DADA [17] � 42.6

DG Ours × 40.9

target domain-accessible DA methods have the inherent per-
formance superiority than DG methods which are target
domain-agnostic. In order to see whether our approach is up
to the performance standard of DA, we compare the results
of our method with those reported from several previous
state-of-the-art DA methods. From Tab. 2 and Tab. 3, we
can see that the generalization performance of our method



outperforms the adaptation performance of most other tech-
niques. In addition, no target-domain data is needed in our
method, resulting in more extensive applicability.

Appendix C. Further Implementation Details

We follow previous work [3, 11] to adopt normalization
and whitening at the first two stages of convolution layers,
since shallow layers encode more style information [11].
As shown in Fig. 1, for each backbone network, we impose
SAN and SAW after stage 1 and stage 2.
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Figure 1. Detailed Architecture of our approach with the backbone
of VGG and ResNet.

Appendix D. Computational complexity

As shown in Tab. 4, compared to the baseline, our meth-
ods performs domain generalization with negligible addi-
tion in both training and inference time. This is because the
proposed modules are only implemented in the first two lay-
ers of the network, for only four main categories i.e. C = 4,
see Sec. 5.5 of the main paper. The additional memory
overhead from our modules is less than 2G.

Table 4. Comparison on computation cost.

Backbone Methods Memory (G) Training Time (s) Inference Time (ms)

Vgg-16 Baseline 5.28 0.37 48.17
Ours 7.41 0.39 48.20

Res-50 Baseline 6.43 0.40 48.84
Ours 8.04 0.41 48.86

Res-101 Baseline 8.24 0.43 50.31
Ours 10.17 0.45 50.37

Appendix E. More qualitative results
Fig. 2 shows more qualitative results under various un-

seen domains. We demonstrate the effects of the proposed
semantic-aware feature matching by comparing the seg-
mentation results from our proposed approach and the base-
line. In the setting of GTA5 → Mapillary, the baseline fails
to cope with these weather changes, while ours still shows
fair results. Under the illumination changes as shown in
GTA5 → BDDS, our method finds the road and sidewalk
clearer than the baseline.
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