
Figure 4. The raw output of FutureDet includes many false
positive detections and forecasts (shown in red). Further post-
processing is required to leverage the output of our end-to-end
model in further downstream tasks.

A. Examining FutureDet’s Predictions

One of the challenges of forecasting from raw sensor
data is appropriately handling false positive detections and
forecasts. The standard forecasting setup allows us to build
models in isolation from other factors. However, the stan-
dard assumption of having perfect input trajectories is not
feasible in practice as it critically depends on perfect ob-
ject tracks (and by extension perfect detections) as inputs,
which are nearly impossible to obtain in practice. As seen
in Figure 4, the raw output of FutureDet makes it challeng-
ing to use in practice. Intuitively, training a model to make
“multiple bets” about the position of objects may induce
more false positives. Further post-processing is required
to leverage the output of our end-to-end model in further
downstream tasks.

B. Evaluating Pedestrian Forecasting

In this section, we evaluate pedestrian forecasting on the
nuScenes dataset. Forecasting pedestrian movement can be
considerably more challenging than car forecasting because
pedestrians are more dynamic. Given our 3 second fore-
casting horizon, pedestrians typically do not move very far
from their initial position. As a result, we define tighter
match thresholds for pedestrian forecasting. A successful
match in the current frame is determined based on the dis-
tance from the center, averaged over distance thresholds

of {0.125, 0.25, 0.5, 1}m. A successful match in the final
timestep is determined based on the distance from center,
averaged over distance thresholds of {0.25, 0.5, 1, 2}m re-
spectively. We highlight the results of pedestrian forecast-
ing in Table 3.

We see that FutureDet performs the best overall, with
26.9 mAPf . Looking to Figure 5, it is clear that pedes-
trian detections are tightly clustered together, making back-
casting less effective overall. We also find that many of
the predicted multiple-futures are very similar to one an-
other, indicating that the model is not able to model dy-
namic pedestrian futures. However, FutureDet still consis-
tently improves over FaF* by 1% on APf metrics.

We train a version of our model with road masks as an
additional input channel into the BEV feature representa-
tion (after the sparse-voxel backbone). This brings very lit-
tle change to the results. We hypothesize that adding the
map information does not provide additional information.
However, further exploration is required to evaluate how to
best fuse LiDAR and map information.

Figure 5. We qualitatively evaluate pedestrian forecasts from Fu-
tureDet (we denote the ground-truth trajectories with green and
multiple future predictions with blue for the highest confidence
forecast and cyan for the remaining future predictions). Pedes-
trian forecasting is more difficult than car forecasting due to the
dynamic movement of pedestrians. FutureDet struggles to accu-
rately forecast pedestrians because they often travel in crowds.
This makes it difficult to accurately detect and forecast individ-
ual pedestrian motion. Often, the predicted multiple futures are all
linearly moving, and are often similar to each other.



K=1 K=5

AP stat. AP lin. APnon−lin. mAP AP stat. AP lin.. APnon−lin. mAP

APdet. APf APdet. APf APdet. APf mAPdet. mAPf APdet. APf APdet. APf APdet. APf mAPdet. mAPf

Detection + Constant Velocity 55.1 33.3 73.5 27.8 96.9 12.4 75.2 24.5 55.1 33.3 73.5 27.8 96.9 12.4 75.2 24.5
Detection + Forecast (cf . [37]) 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4
Trajectron++ [43] 55.1 16.4 73.5 7.8 96.9 5.2 75.2 9.8 55.1 18.1 73.5 9.0 96.9 6.9 75.2 11.3

FutureDet 53.1 33.3 72.4 32.6 95.3 14.7 73.6 26.9 53.1 35.1 72.4 34.0 95.2 15.0 73.6 28.0
FutureDet-PointPillars 41.0 20.7 69.1 29.8 93.3 13.3 67.8 21.3 41.0 22.9 69.2 31.0 93.1 13.5 67.7 22.5
FutureDet + Map 52.4 33.0 71.8 32.0 95.3 14.4 73.2 26.5 52.4 34.8 71.8 33.4 95.2 14.8 73.2 27.7

Table 3. Joint pedestrian detection and forecasting evaluation on nuScenes. We adopt top-K evaluation for forecasting and evaluate under
two settings of K = 1 and K = 5 (for forecasting only). We further breakdown the performance of each model by examining the detection
AP (APdet.) and forecasting AP (APf ) on static, linear, and non-linearly moving sub-categories. Note that since pedestrians have smaller
displacement over a 3 second forecasting horizon, we tighten the match thresholds as described above. FutureDet performs the best,
improving over FaF* by 0.5 mAPf . As with car forecasting, FaF* and the constant velocity baseline beat Trajectron++ by 14.4 % and
16.6 % mAPf respectively. Notably, training with a PointPillars backbone dramatically reduces FutureDet performance on all metrics.
In addition, we find that using a road mask does not significantly change the performance of FutureDet, indicating that the model might
already be reasoning about spatial context.

C. FutureDet Architecture

In this section, we further describe the implementation
details of FutureDet. Specifically, we focus on the detec-
tor head architecture, and the sampling strategy used to im-
prove nonlinear trajectory forecasting.

Recurrent Features. We re-purpose CenterPoint for our
implementation of FutureDet. However, CenterPoint is de-
signed to detect objects in the current frame. It uses a shared
feature representation for all classes. Although this effec-
tively captures object spatial location, it does not allow for
a robust representation of forecasted features. Specifically,
since FutureDet detects cars and future-cars, we ex-
pect that the features required to detect these temporally off-
set classes should be different. To this end, we allow the
model to learn a shallow network that transforms current
features into future features as shown in Figure 6.

Trajectory Sampler. The distribution of static, linear,
and non-linear trajectories in the nuScenes dataset is un-
balanced. Since most cars are parked, we find that 60%
of the trajectories are static. In order to address this data
imbalance, we leverage copy-paste augmentation proposed
by [57] to oversample linear and nonlinear trajectories dur-
ing training. Importantly, we ensure that our copy-paste
augmentation samples at the trajectory level, instead of at
the class level, allowing consistent augmented trajectories
across all detection heads (i.e. classes).

D. Computing Motion Subclass AP

Computing subclass average precision is straightforward
in principle if both predictions and ground-truth have sub-
class labels; one can simply treat the sub-class as a class
and apply standard precision-recall metrics. In our case,

Lidar Sequence

3D backbone

Detection @ T+1

Features @ T Features @ T+1 Features @ T+N

Detection @ T Detection @ T+N

…

…

…

…

Figure 6. FutureDet’s detector head architecture adapts Center-
Point’s architecture for the task of forecasting. Importantly, Cen-
terPoint shares one set of features for all classes (i.e. cars, trucks,
pedestrians, etc.). Since we adapt the architecture to forecast
cars and future-cars, the single shared feature may not be
able to effectively model long-term forecasting. To this end, we
allow the model to learn a shallow network that transforms current
features into future features.

predictions do not come with a subclass label. Instead, we
match predictions to ground-truth at a class-level, and as-
sign the ground-truth sub-class to the true positive matched
predictions. However, this will not produce any sub-class
labels for false positive predictions (that are unmatched).
Instead, the metric evaluation code derives sub-class labels
for false positive predictions, by applying the same logic
used to derive sub-class labels for the ground-truth. We fol-
low this procedure as it is also used to produce small-vs-
large sub-class precision-recall metrics for standard detec-
tion toolkits [35]. Finally, although we use the language of
sub-classes, our formalism can apply to any attributes asso-
ciated with a detection.

We derive the subclass label as a function of the (ground
truth or predicted) trajectory. For each trajectory, we first
compute the IoU between bounding boxes at the first and
last timestep. If the IoU is greater than 0, this trajectory is
considered to be static. Next, using the velocity of the first



timestep bounding box, we apply a constant velocity fore-
cast to the initial position to compute a target box. If the
IoU between the last timestep box and target box is greater
than 0, this trajectory is considered to be linear. All trajec-
tories that are not classified as static or linear as considered
to be non-linear trajectories.

E. Broader Impact
Autonomous agents will play an important role in the au-

tomation of tasks that can be considered unsafe (e.g., due
to a high number of traffic accidents). Forecasting is at
the heart of autonomous vehicle navigation: safe naviga-
tion necessitates motion prediction of surrounding agents to
ensure driving safety. By leveraging LiDAR sensory data
to accomplish this task, we can better understand world ge-
ometry and dynamics. Moreover, establishing the proper
metrics, particularly considering the performance of mov-
ing and static car trajectories, is essential for building safe
embodied robotics systems.


