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Abstract

This supplementary material is divided into seven sec-
tions. The first one provides an ablation on how perfor-
mance varies based on values of ↵ used to weigh the pro-
posed distillation loss. The second one shows the results
of the TSN architecture. Additional results obtained on the
combination of all modalities, i.e., RGB, Event, and Flow
are provided as third. It follows ablations on the number
of channels for the event representation, alternative fusion
strategies, and additional details about the event conver-
sion. Finally, some qualitative results are presented, show-
ing the Class Activation Maps resulting from the proposed
approaches.

1. Ablation on ↵

We illustrate in Figure 1 how performance varies based
on the weight ↵ used to scale the distillation loss Ldist used
in the proposed E2(GO)MO. We set ↵ = 50, 100, 150, 200,
and show the performance of Ldist when applied to both
event and RGB modality. E2(GO)MO outperforms the
baseline for all values of ↵, demonstrating that Ldist is not
sensitive to ↵ variations. Moreover, it can be seen that
E2(GO)MO outperforms RGB+Ldist on unseen domains
for all values of ↵.

2. Temporal Segment Network (TSN)

In Table 1 we show the performance of TSN [6], which
we decided not to report in the main paper because it
showed the lowest performance w.r.t. TSM [3] and I3D [1]
networks. In line with the behavior of I3D and TSM, the
event modality consistently outperforms the RGB modal-
ity on unseen domains while performing on-par with it on
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Model Streams Pretrain Seen (%) Unseen (%)

TSN Event ImageNet 59.82 35.24
TSN RGB ImageNet 60.88 31.55
TSN Flow ImageNet 67.26 43.35

TSN Event+RGB ImageNet 63.92 34.35
TSN Event+Flow ImageNet 65.57 41.31

TSN RGB+Flow ImageNet 66.81 38.81

Table 1. Accuracy results (%) of single- and multi-modal streams
on TSN architecture. Bold: the best scores for single and multi-
modal.

seen ones. The algorithmically generated (TV-L1) optical
flow, as expected, provides the best results. Indeed, when
combining the event modality with optical flow rather than
RGB, superior results are produced, justifying the decision
to use distillation between the two last. Most importantly,
when combined to optical flow, the event modality outper-
forms the combination of RGB and optical flow on unseen
test sets.

3. All Modalities: RGB, Flow, Event

We show in Table 2 the performance obtained by com-
bining all the RGB, optical flow, and event modalities. In-
terestingly, combining the contribution of all modalities
does not improve the best single-modal results on TSM and
TSN. In fact, on TSM the combination of all modalities
achieves 73.85% and 44.89% accuracy on seen and unseen
domains respectively, while the optical flow alone achieves
73.23% and 53.98% (see main paper). This behavior has
been already noticed in [7], where the authors attribute the
problem to the fact that different modalities overfit and gen-
eralize at different rates, thus training them jointly with a
unique optimization strategy leads to sub-optimal results.
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Figure 1. Difference in terms of performance (average Top-1 Ac-
curacy (%)) based on the value of ↵ used to weight Ldist on both
seen and unseen test sets.

Performance on I3D, on the other hand, slightly increases,
given the fact that 3D convolutions have a lower tendency
to overfit on appearance, and hence do not prioritize RGB
information as much as 2D-based networks do. This can
also be seen in the multi-modal combinations reported in
the original paper, where combining appearance and mo-
tion information (RGB+Flow) improves performance with
respect to Flow alone in I3D but not in TSM.

4. Ablation on Number of Channels

In Table 3 we show the performance of the event modal-
ity depending on the number of channels used for the voxel
representation [11]. It can be observed that extracting 3-
channels Voxel Grid is the optimal choice and we used it in

Model Streams Pretrain Seen (%) Unseen (%)

I3D RGB+Event+Flow ImageNet 60.38 44.24
E2GO-3D RGB+Event+Flow ImageNet 61.06 45.87

TSM RGB+Event+Flow ImageNet 72.66 44.25
E2GO-2D RGB+Event+Flow ImageNet 73.85 44.89

TSN RGB+Flow+Event ImageNet 65.93 36.92

Table 2. Accuracy results (%) of the combination of all modalities.
In bold the best results on both seen and unseen test sets.

Model Voxel ch. Testing Seen acc Unseen acc

I3D

9 Clip 49.84 34.52
Video 52.50 36.24

3 Clip 53.75 35.90
Video 55.54 37.52

1 Clip 49.34 34.93
Video 51.29 35.05

TSN

9 Clip 57.28 31.74
Video 58.98 32.52

3 Clip 58.81 34.65
Video 59.82 35.24

1 Clip 52.59 30.94
Video 54.54 31.87

TSM

9 Clip 65.02 37.65
Video 66.39 38.71

3 Clip 64.38 37.75
Video 65.93 38.23

1 Clip 60.76 34.66
Video 62.46 36.45

Table 3. Accuracy results (%) on I3D, TSN and TSM architectures
depending on the number of channels for the event representation.

all the experiments in the main paper. In fact, it allows re-
taining the first ImageNet pre-trained convolution, which is
otherwise trained from scratch when using a different num-
ber of channels. Indeed, the latter option is damaging on
unseen domains. In fact, the first layers of the network are
usually the ones that specialize the most on training data
distribution [8], thus training them from scratch may lead
the network to overfit on the training set, poorly generaliz-
ing on the unseen test. Instead, when exploiting pre-trained
layers, the network can take advantage of robust low-level
features.

5. Other Fusion Strategies

In the main paper, we report results by aggregating mul-
tiple modality streams using a late fusion approach as in
[4], consisting in summing the prediction logits from both
modalities. In Table 4 we validate the choice of a late fu-
sion approach over other existing ones, i.e., TBN [2] and



Late fusion TBN [2] TRN [9]

Seen Unseen Seen Unseen Seen Unseen

Event (TSM) 65.93 38.23 64.96. 37.70 64.81 37.53
E2GO-2D 65.40 40.33 64.24 38.51 64.03 38.54

Event (I3D) 55.54 37.52 55.05 35.69 55.88 36.37
E2GO-3D 57.87 38.76 58.77 39.17 58.98 39.87
E2GO-MO 70.76 45.57 70.70 44.36 70.48 44.96

Table 4. Ablation on different fusion strategies alternative to tra-
ditional late fusion. Bold: highest result for each setting.

TRN [9]. The first one combines the feature embeddings of
each modality before temporal aggregation through a mid-
level fusion, while the second one models multi-scale rela-
tions. As it can be seen from results, the standard late fusion
is the one achieving better results on almost all configura-
tions, and thus we used it for all experiments in the main
paper.

6. Additional Details on Event Conversion

A crucial parameter in the conversion pipeline is the con-
version factor indicating the number of consecutive upsam-
pled RGB frames to be used to create a single voxel repre-
sentation. We observed the average number of events gen-
erated for each sample depending on the conversion factor
(Figure 2). We considered that (i) if the number of frames
used is too low, there are not enough events to generate a
proper voxel representation; (ii) increasing the conversion
factor would also decrease substantially the dimensional-
ity of the dataset and (iii) in an hypothetical online setting,
an high conversion factor is equivalent to increase the time
before the generation of a voxel. Taking into account all
the above aspects, we chose a trade-off conversion factor of
6 RGB frames per voxel. Indeed, considering that EPIC-
Kitchens’s videos have all been sampled at 60 FPS, using
a conversion factor of 6 also implies we are considering
a temporal interval of 100 ms for the creation of a single
voxel, which is consistent with the N-Cars dataset [5].

7. Qualitative Results

To conclude this supplementary material, we present in
Figure 3 and Figure 4 some additional qualitative results
based on the Class Activation Maps [10] obtained with
standard TSM architecture for RGB, Event modality and
E2(GO)MO variation on both seen and unseen test sets. We
show that the event modality, especially in the E2(GO)MO
variation, focuses on parts of the scene that are highly cor-
related with the motion of the action, allowing the network
to be more robust when tested in unseen scenarios (Figure
4). The RGB modality, on the other hand, appears to be
more focused on kitchen elements, such as the sink, rather

Figure 2. Conversion factor vs average number of generated events
on a single sample.

than the user’s hands. This demonstrates that RGB has dif-
ficulties in focusing on elements of the motion that are dis-
criminative, limiting its capacity to generalize to unknown
settings. Indeed, as indicated in the main paper, emphasiz-
ing on motion helps the event modality to generalize better
on unknown test sets since it does not overfit on the environ-
ment, which differs the most from one kitchen to another.
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