
A. Supplementary material – Overview

The supplementary material is organized as follows. In
Sec. A.1 we provide the implementation details for our ap-
proach. In Sec. A.2 we give the details of the evaluation
metrics used in the main paper and here. In Sec. A.3 we pro-
vide the per class results for the Pix3D dataset. In Sec. A.4
we provide an ablation of the ratio between real data and
sythetic datasets. In Sec. A.5 we show detailed results on
benefits of multiple refiner iterations. Sec. A.6 provides ad-
ditional quantitative evaluation of the performance of our
model. Finally, in Sec. A.7 we provide more qualitative re-
sults on Pix3D, Stanford Cars, and CompCars datasets.

A.1. Implementation details and training data

We base our implementation on the render and compare
approach of CosyPose [22] for 6D object pose estimation.
We recall the main implementation details, explain the main
differences with [22], and give the details of our training
data.
Network architecture. The architecture of the network F
(equation (1) in the main paper) relies on a ResNet-50 [16]
backbone, followed by average pooling and a linear layer
for predicting the update �✓. The first input block in the
backbone is inflated from 3 to 6 channels, to allow for the
input of the merged RGB input image and the RGB ren-
dered view. The (cropped) input image and rendering are
resized to the input resolution: 640⇥ 640 for Pix3D dataset
and 300⇥ 200 for StanfordCars and CompCars datasets.
Initialization. In all experiments, we set the initial focal
length f0 = 600 pixels, which we found experimentally to
be a good initial value for all datasets. This focal length
could also be initializatied using an EXIF file, or using a
coarse estimate directly predicted by a different method.
The initialization of the 6D object pose T 0 follows [22]
but relies on the initial focal length f0 instead of using the
ground truth focal length for computing an approximation
of the object 3D translation. The initial depth of the ob-
ject is set to z = 1 m, and the x � y components of the
3D translation are derived analytically by computing the 3D
position of the object center that reprojects to the center of
the 2D detection, assuming the camera projection model de-
fined by f0. The initial object rotation is set to the identity:
R0 = I3.
Coarse estimate and refinement. We follow Cosy-
Pose [22] and use two separate networks for coarse initial-
ization and iterative refinement. The coarse network cor-
rects the largest errors (between the observed state and the
fixed initialization ✓0) during the first iteration k = 1. A
separate refinement network iteratively refines the estimates
by correcting smaller errors. The refinement network runs
for multiple iterations, we run K iterations of the refinement
network at test time in our experiments, with K = 15 on

Pix3D and K = 55 on the Stanford cars/CompCars datasets
in our experiments.
Training input error distribution. We use the same net-
work architecture defined above for the coarse and refine-
ment networks, but both are trained with different error dis-
tributions to simulate what each network is going to see at
test time. During training, the initialization of the coarse
network is the same as the one used at test time and de-
scribed in the previous paragraph. Simulating the error dis-
tribution of the refinement network is more complicated as
its input is not fixed and depends on the coarse estimate.
To simulate the errors in focal length which the refinement
network will see, we sample the focal length fk from a
gaussian distribution centered on the ground truth fgt, with
variance 0.15fgt. The error of the input pose given to the
refiner is sampled from a Gaussian with standard deviation
of 1cm around the x � y components of translation, 5 cm
for the depth, and noise is added to the ground truth rotation
matrix using three Euler angles sampled from Gaussian dis-
tributions with variance of 15�.
Training data. For training our coarse and refinement
networks, we use the same training images. They con-
sist of both real training images (of the Pix3D, Comp-
Cars/Stanford Cars datasets) and one million synthetic im-
ages that are generated for each dataset using the follow-
ing procedure. For each image, we sample a random ob-
ject instance, sample its rotation uniformly in the quater-
nion space, and sample its 3D position within a box of
15 cm size. We add random textures to the object and to
the background. The camera-to-object distance is sampled
within the interval (0.8, 3.0) meters for the Stanford/Comp
cars datasets, and (0.8, 2.4) meters for Pix3D. The focal
length is sampled within (200, 1000) pixels, which covers
the range of focal lengths from all datasets. While sam-
pling each minibatch during training, one of the real images
is sampled with probability 0.5% while the synthetic im-
ages are sampled with probability 99.5% and account for
most images in each minibatch. Following [22], we also
use data augmentation to increase the number of training
images. Data augmentation includes adding blur, contrast,
brightness, color, and sharpness image filters to the image,
and replacing the background with an image from the Pas-
cal VOC dataset with probability 0.3.
Training procedure. The coarse and refinement networks
are initialized using classification network pretrained on Im-
ageNet, and are trained using the same procedure as in [22].
Training is performed on 40 NVIDIA A100 GPUs using a
global batch size of 1280. The average training time for
one coarse/refiner model is around 5 hours. Each network
is trained for 10M iterations using the Adam optimizer [21]
with a learning rate of 3 ⇥ 10�4. We use a linear warmup
of the learning rate during the first 700K iterations and de-
crease it to 3 ⇥ 10�5 after 7M iterations. During infer-

ence, the network can process 32 640⇥640 pixel resolution
images in approximately 10 seconds. This time includes
coarse estimation and 15 refiner iterations.
2D detection and instance-recognition. We use Mask R-
CNN [15] for predicting a 2D bounding box of the object
of interest and identifying the object instance that is ren-
dered during the alignment. The Mask R-CNN is based
on a ResNet-50 [16] feature pyramid (FPN) backbone [25].
The network is initialized from a network trained on MS
COCO, and the first ten convolutional layers remain fixed
during training. This detector is trained using only the data
provided by the Pix3D and Stanford/Comp cars datasets.
Cropping strategy. The images from the datasets are cen-
ter cropped to 640⇥ 640px for Pix3D and 300⇥ 200px for
Stanford cars and CompCars. The input image is padded
to conserve the input aspect ratio. The second cropping
happens before the input to the network itself. Let us call
(xc, yc) the 2D coordinates resulting from the projection of
the 3D object center by the camera with intrinsic parameter
matrix K and [x1, y1, x2, y2] the coordinates of the bound-
ing box provided by external means (for example, the Mask
R-CNN detector), where x1 is the lower-left coordinate, x2

is the lower-right coordinate, y1 is the upper-left coordinate
and y2 is the upper-right coordinate of the provided bound-
ing box. Then we define

xdist = max(|x1 � xc|, |x2 � xc|), (16)

ydist = max(|y1 � yc|, |y2 � yc|). (17)

Then, the cropped image width and height are given by

w = max(xdist, ydist/r) · 2�, (18)

h = max(xdist/r, ydist) · 2�, (19)

where r is the aspect ratio of the input image and � = 1.4 is
a parameter controlling the enlargement of the input image
to capture the whole object. This value was chosen follow-
ing [24].
Loss weights. We utilize ↵ = 10�2 and � = 1 as weights
for the losses given by equations (8) and (9) in the main
paper.

A.2. Evaluation criteria

We now recall the metrics presented in [45], com-
monly [12, 13, 45] used on these datasets and also used in
this work.
Detection metric. We report the detection accuracy
AccD0.5 which corresponds to the percentage of images for
which the intersection over union between the ground truth
and predicted 2D bounding box is larger than 0.5. Note that

an incorrect object prediction is not penalized by this met-
ric as our method can predict the focal length and object 6D
pose even if the model is only approximate as long as it be-
longs to the correct category for which the 3D models are
approximately aligned, similar to [12, 13, 45].
6D pose metrics. We report the point matching error eR,t

that measures the error between the 3D points of the ob-
ject model transformed with the ground truth and with the
estimated 6D pose with respect to the camera:

eR,t =
dbbox
dimg

avg
p2M?

||(Rp+ t)� (R̂p+ t̂)||2
||t̂||2

, (20)

where dbbox is the diagonal of the ground truth 2D bound-
ing box, dimg is the diagonal of the image, M? is the 3D
model of the ground truth object instance, (R, t) is the pre-
dicted 6D pose and (R̂, t̂) is the ground truth 6D pose. Note
that the point error in 3D (the numerator of (20)) is nor-
malized by the ground truth object-to-camera distance ||t̂||2
and multiplied by the relative size of the object in the image
dbbox
dimg

[12].
Following [12], we also use metrics that evaluate sep-

arately the quality of the estimated 3D translation and ro-
tation. We use the rotation error computed using the ge-
ometric distance between the predicted rotation R and the
ground truth rotation R̂ eR = ||log(R̂T

R)||Fp
2

, and the normal-

ized translation error et =
||t�t̂||2
||t̂||2

, where t is the predicted
translation and t̂ is the ground truth translation. For all the
errors, we report the median value (denoted as MedErrRt,
MedErrR, MedErrt, respectively). Following [12], for
the rotation error we also report the percentage of images
with eR ⇡

6 denoted as AccR⇡
6

.
Focal length and reprojection metrics. Following [12],
we report the relative focal length error ef = |f̂�f |

f̂
be-

tween the estimated focal length f and the ground truth fo-
cal length f̂ . We also report the reprojection error eP which
is similar to the error of 6D pose (eq. (20) but reprojects
the 3D points into the image, also taking into account the
estimated focal length f :

eP = avg
p2M?

||⇡(R, t, f, p)� ⇡(R̂, t̂, f̂ , p)||2
dbbox

, (21)

where p are the 3D points of the object model M? of the
ground truth object instance, ⇡(K(f), R, t, p) is the repro-
jection of a 3D point p using the estimated parameters, and
⇡(K(f̂), R̂, t̂, p) is the reprojection of the same 3D point p
using ground truth parameters, and dbbox is the diagonal of
the ground truth 2D bounding box. We report the median
value of the reprojection error MedErrP and the percent-
age of images where the reprojection error is below 0.1 of
the image, AccP0.1

A.3. Per class results on the Pix3D dataset

In Tab. 4 we show the performance of our FocalPose ap-
proach on individual Pix3D classes. For bed, chair and
sofa our algorithm clearly outperforms the prior methods
on the five out of eight reported metrics. In particular,
we see a clear improvement in the estimated focal length
and 3D translation, which validates the contribution of our
work. For tables, our approach improves only two out of the
eight metrics. We believe this could be attributed to the fact
that tables are often symmetric, which makes the 6D object
pose estimation approach hard and often ambiguous, as dis-
cussed in the main paper. Object symmetries are one of the
main failure models of our approach. The overall difficulty
of the table class is clearly visible from the significantly
worse results for all the tested methods on this class.

A.4. Training data ablation

Manually annotating real in-the-wild images [44, 45]
with the focal length and 6D pose is difficult because it re-
quires significant effort and the ambiguities can be hard to
resolve. This setting results in relatively few available train-
ing images. Moreover, the annotations are often of poor
quality as has been also discussed in Sec. 4.2 and illustrated
in Fig. 4 (row 8) in the main paper. Using synthetic data
allows generating many images with accurate annotations.
In Tab. 3, we report the results of our coarse model trained
with only real data, only synthetic data, or a mix of syn-
thetic and real data in each mini-batch (the fraction of real
data in the mixed-data mini-batch is indicated in the table
row). Using (exact) synthetic data in addition to a small
number of (human-labeled) real images in each mini-batch
yields the lowest median error.

A.5. Multiple refiner iterations

Finally, in Figure 7, we show how the model perfor-
mance evolves with an increasing number of refiner itera-
tions at inference time. Two effects can be observed. First,
the translation and focal length errors tend to go down with
the number of iterations and they empirically reach a fixed
error value. On the other hand, we observe that the rota-
tion errors can increase with the number of iterations, which
can be seen for the Pix3D table class. We believe this find-
ing could be attributed to the fact that our refiner model is
trained only for one iteration. These results can be poten-
tially improved by increasing the number of refiner itera-
tions during training at the cost of additional compute.

A.6. Detailed results

To show fine-grained information about the errors of our
model, we provide a set of histograms and plots that are
complementary to the results in Table 2 in the main paper
and Table 4 in this supplementary material.

Dataset MedErrR MedErrt · 10 MedErrf · 10

Synth only 5.44 2.18 2.04
Synth + Real 0.5% 2.98 1.29 1.36

Synth + Real 5% 3.08 1.33 1.40
Real only 4.13 1.92 1.91

Table 3. Ablation for combining real and synthetic training

data on Pix3D sofa dataset. Mix of mostly synthetic data with a
small number of real images in each mini-batch performs best.

Input image Ground truth Our prediction

Figure 6. Inaccuracies in ground truth annotations in the

Pix3D dataset. Example of an alignment with an incorrect 3D
model predicted by our approach (right) that results in a lower 3D
translation and focal length errors compared to the aligned ground
truth 3D model (middle). This is caused by a mismatch between
the bed depicted in the input image (with no mattress) and the
ground truth 3D model.

In Figure 8 we show the distributions of rotation and re-
projection errors for the Pix3D dataset and in Figure 9 for
the CompCars and Stanford Cars datasets. For the Pix3D
chair and table classes we observe peaks at ⇠90� intervals,
which suggests that many errors in those classes come from
symmetrical objects that cause problems for our approach.
For the car datasets we observe a large peak at ⇠ 180�,
which also shows that some of the car models are fitted to
incorrect orientations due to (almost) symmetrical models.

Figure 10 shows rotation and projection accuracies at
different projection and rotation error thresholds. The
standard thresholds used in previous work are quite loose
and correspond to the right-most endpoints of the reported
graphs, i.e., reprojection error of 0.1 (10% of the object
bounding box size) and rotation error of 30 degrees. We ob-
serve that the accuracy of our approach drops only slightly
over a range of tighter thresholds, up to 0.05 relative repro-
jection error and up to about 15� rotation error. For stricter
thresholds (below around 0.05 and 15�), the accuracy of our
model starts dropping significantly, which shows that there
is still space for improvement in future work.

A.7. Additional qualitative results

In this section, we provide more qualitative results of
our approach. Figures 11–18 show additional results for
the chair, bed, sofa, and table classes in the Pix3D dataset.
Figures 19 and 20 show additional results for the Stanford
cars and CompCars datasets, respectively. The qualitative
results demonstrate the high accuracy of the alignments ob-
tained by our approach despite variation in focal length,
variability of the 3D models that have often very little tex-

Detection Rotation Translation Pose Focal Projection

Method Dataset Class AccD0.5

MedErrR AccR⇡
6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

[45]

Pix3D bed

98.4% 5.82 95.3% 1.95 1.56 2.22 6.05 74.9%
[12] LF 99.0% 5.13 96.3% 1.41 1.04 1.43 3.52 90.6%
[12] BB 99.5% 5.40 97.9% 1.66 1.17 1.59 3.55 93.2%

Ours 98.4% 3.16 91.6% 1.28 0.93 1.28 1.91 88.9%

[45]

Pix3D chair

94.9% 7.52 88.0% 2.69 1.58 1.98 6.04 75.3%
[12]-LF 95.2% 7.52 88.8% 1.92 1.21 1.62 3.41 88.2%
[12]-BB 97.3% 6.95 91.0% 1.68 1.08 1.58 3.24 90.9%

Ours 91.8% 3.56 85.4% 1.49 0.94 1.36 1.73 79.3%

[45]

Pix3D sofa

96.5% 4.73 94.8% 2.28 1.62 2.42 4.33 82.2%
[12] LF 96.5% 4.49 95.0% 1.92 1.33 1.79 2.56 93.7%
[12] BB 98.3% 4.40 97.0% 1.63 1.16 1.73 2.13 95.6%

Ours 96.9% 2.98 97.6% 1.29 0.83 1.36 1.52 93.9%

[45]

Pix3D table

94.0% 10.94 72.9% 3.16 2.28 3.03 8.90 53.6%
[12] LF 94.0% 10.53 73.5% 2.16 1.62 2.05 5.92 69.5%
[12] BB 95.7% 10.80 77.2% 2.81 1.78 2.10 5.74 72.4%

Ours 94.9% 9.98 61.8% 1.90 1.68 2.13 6.72 54.7%

Table 4. Comparison with the state of the art for 6D pose and focal length prediction on the Pix3D dataset split by class. Bold denotes
the best result among directly comparable methods. See section A.3 in this supplementary for a more detailed analysis of the results.

1

Focal length error Translation error Rotation error

Figure 7. Evolution of errors with an increasing number of refiner iterations at inference time for different object classes on the Pix3D
dataset.

ture, occlusions, and cluttered backgrounds. Finally, Fig-
ure 21 shows additional examples of failure modes on the
Pix3D dataset.

For Pix3D, we provide good results for the chair class in
Fig. 11 and Fig. 12, for the bed class in Fig. 13 and Fig. 14,
for the sofa class in Fig. 15 and Fig. 16 and for the table
class in Fig. 17 and Fig. 18. We also provide qualitative
results for Stanford cars in Fig. 19 and for CompCars in
Fig. 20. Please notice the quality of alignment that our ap-
proach can achieve. We provide the failure cases for the
Pix3D dataset in Fig. 21.

1

Projection error histograms
Rotation error histograms

2

3

4

Figure 8. Projection error histograms (left) and rotation error histograms (right) for the Pix3D object classes. Please note the
logarithmic scale of the y-axis.

1

Projection error histograms Rotation error histograms

2

Figure 9. Projection error histograms (left) and rotation error histograms (right) for the CompCars (first row) and Stanford Cars

(second row) datasets. Please note the logarithmic scale of the y-axis.

1

Projection accuracy at different thresholds
Rotation accuracy at different thresholds

2

Figure 10. Projection and rotation accuracies at different error thresholds.

Input image Ground truth Our prediction

Figure 11. Qualitative results for Pix3D chairs - part 1.

Input image Ground truth Our prediction

Figure 12. Qualitative results for Pix3D chairs - part 2.

Input image Ground truth Our prediction

Figure 13. Qualitative results for Pix3D beds - part 1.

Input image Ground truth Our prediction

Figure 14. Qualitative results for Pix3D beds - part 2.

Input image Ground truth Our prediction

Figure 15. Qualitative results for Pix3D sofas - part 1.

Input image Ground truth Our prediction

Figure 16. Qualitative results for Pix3D sofas - part 2.

Input image Ground truth Our prediction

Figure 17. Qualitative results for Pix3D tables - part 1.

Input image Ground truth Our prediction

Figure 18. Qualitative results for Pix3D tables - part 2.

Input image Ground truth Our prediction

Figure 19. Qualitative results for the CompCars dataset.

Input image Ground truth Our prediction

Figure 20. Qualitative results for the Stanford car dataset.

1

Input image Ground truth Our prediction

2

3

4

5

6

7

Figure 21. Examples of failures in the Pix3D dataset. Typical failures include symmetric objects (rows 1-2), local minima (rows 3-5) and
misalignment due to the incorrect model (row 6-7). For more details please see Sec. 5 and Fig. 4 in the main paper.

