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1. Implementation Details

1.1. Model

Code will be made public after reviewing process.
Point Sampler: We construct the Point Sampler using three
stacked DevConv layers, followed with a ReLU activation.
We select 64 as a hidden dimension, since we aim for a
lightweight and fast model. We experimented with deeper
architectures and larger latent spaces but we did not observe
a significant increase in the performance compared to the
run-time trade off.

Edge Predictor: Before passing the nodes to the edge
predictor we extend the original adjacency matrix by adding
links between the nodes sampled by the Point Sampler. This
is done by constructing a k-nn graph for the sampled node
set. We use k = 15. The extended graph is passed through
a DevConv layer with 64 hidden dimensions. We utilized
DevConv to give the model the opportunity to assign sparse
attention weights. With the use of Linear or vanilla-gnn
layers, points with similar features will always receive high
attention scores, which in practice we observed that is not
always useful. In particular, since the k-nearest neigh-
bors of point will most often share similar features, their
softmax normalization will result in almost uniform atten-
tion weights. In contrary, by utilizing DevConv we achieve
larger variations between the point features which enables
more sparse attention weights.

Face Classifier: We utilize three stacked TriConv layers
followed with ReLU activation to encode triangle to the la-
tent space, formed by its k-nearest neighbors. We set k=20,
with the triangle neighbors selected by the respective dis-
tances to their barycenters. The triangle features are en-
coded to an 128-dimensional embedding space with addi-
tional 9 features from the triangles relative coordinates. The
first TriConv layer takes as input the initial triangle proba-
bility predicted by the edge predictor. The final TriConv
layer is topped with a softmax layer to constrain the trian-
gle probabilities to the (0, 1) interval.

1.2. Loss Functions

All Triangle Collusion, Edge Crossings and Overlap-
ing Triangles losses are efficiently calculated using the
k=50 nearest triangles of the query triangle based on their
barycenters.

Edge Crossings: To calculate the edge crossings be-
tween two triangles we initially split each triangle to the
three lines that define their edges. Then, we calculate the
points of intersection between all nine possible edge-line
combinations of two neighboring triangles. Finally, we val-
idate if the points of intersection belong inside the line seg-
ments, i.e. edges of the query triangle. For each triangle, we
measure the frequency it penetrates the edges of its neigh-
boring triangle and penalize it using the formula bellow:

Le =
1

|Fs|
∑
t∈Fs

ptme(t) (1)

where pt denotes the probability of triangle t, me(t) the
number of edges that triangle t crosses and Fs the set of
generated triangles.

Overlaping Triangles: To penalize the triangles that
overlap in space, we sample 100 points from each triangle
and calculate their distances from the 50-nearest triangles.
The aim is that each sampled
point to belong to only one trian-
gle. To identify if a point belongs
to a given triangle, we measure
the three areas A1, A2, A3 pro-
duced by substituting each trian-
gle’s vertex with the query point
and crosscheck if the sum of the
three produced areas equals the area of the triangle. We also
provision for triangles that share parallel planes by slightly
increasing the distance tolerance to the axis that is vertical
to the triangle’s plane. Finally, we apply a penalty to all
triangles that share a sampled point. Similar to the Edge
Crossing loss, the penalty applied to the triangle is propor-
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tional to the number of triangles that overlaps:

Lo =
1

|Fs|
∑
t∈Fs

ptmo(t) (2)

where pt denotes the probability of triangle t, mo(t) the
number of triangles that triangle t overlaps.

1.3. Evaluation Measures

Curvature Preservation: A significant property of high
resolution meshes is the sharp details they are able to rep-
resent. A simplification algorithm should also preserve, as
much as possible, these details. Mesh details are most fre-
quently quantified in terms of point curvatures. We measure
the curvature error introduced in the simplified model as:

Ec =

(
1

|P|
∑
x∈P

∥K̄(x)− K̄s(y)∥2
)1/2

(3)

where y denotes the nearest neighbour of x in simplified
set Ps, and K̄(·) denotes the mean curvature. For the point
cloud experiments presented in Section 4.3 we estimate the
point curvature as suggested in [1].

Laplacian Error: To evaluate the preservation of the
mesh spectral properties, we calculated the Laplacian error
between the original and the simplified mesh, defined as the
Mean Squared Error over the first 150 eigenvectors of the
Laplacian operator of the two meshes:

EL =

(∑
i

∥ϕ̂i − ϕi∥2
)

(4)

where ϕi, ϕ̂i denotes the i-th eigenvector of the Lapla-
cian operator for the original and the simplified mesh, re-
spectively.

Normal Error: To assess the visual appearance of the
simplified models we utilize a normal error that measures
the cosine similarity between the normals of the two mod-
els. Regarding the forward term, for each face of the sim-
plified model we find its nearest face in the original mesh
and measure their normal differences. The reverse term es-
timates the closest face of the simplified mesh for each face
of the original mesh and calculates their normal difference.
The mathematical formulation of the total normal error is:

En =
1

|P1|
∑
x∈P

y∈NN(x,Ps)

1− nx · ny

∥nx∥∥ny∥
+

1

|Ps|
∑
y∈Ps

x∈NN(y,P)

1− nx · ny

∥nx∥∥ny∥

(5)

where nx denotes the normal of face x and NN(x,Ps)
the nearest neighbours of face x in simplified mesh Ps.

2. Experiments

2.1. Ablation Study over the loss functions

w/o Collision Loss  
 

w/o Edge Crossing Loss  
 

w/o Overlap Loss  w/o PSD  Proposed - Full 

Figure 1. Ablation study: Qualitative comparison indicating the
contributions of each loss function. Zoomed areas illustrate areas
with irregular triangles.

In this section we assess the importance that each loss
function holds by means of an ablation study (see Table 1).
In particular, we remove one component of the loss function
at a time and measure the Chamfer distance (CD), water-
tightness percetage (WA), the Laplacian error (LE) and the
normals error (NE) at several simplification ratios. It can
be easily observed that the models trained without overlap
(OV), edge crossing (EC) or triangle collusion (TC) losses,
although they achieve similar CD and NE, they fail to pre-
serve the Laplacian of the initial mesh since the irregular
triangles perturb the geodesics of the mesh. In addition,
as illustrated in Figure 1, model trained without Probabilis-
tic Surface Distance (PSD) loss, generates irregular trian-
gles and introduces holes to the triangulation that increase
CD and WA errors. We do not report ablation result for
the Probabilistic Chamfer Distance since it is the only loss
applied to the Point Sampler module. All methods were
trained on TOSCA dataset using the same train-test split.

2.2. Simplification of Textured Meshes.

Although in this study we mainly focus on mesh shape
simplification, it is reasonable to assess the appearance of
simplified textured meshes. In this experiment we qual-
itatively examined the texture preservation of simplified
meshes. To do so, we applied a checker pattern on TOSCA
shapes and evaluated the similarity of the simplified mod-
els with the originals. From Figure 2 one may observe that
the texture of QEM method is unsettled and that the sharp
corners of the checker have become smoother. In contrast,
the proposed method carries significant less noise and bet-
ter preserves the details of the original texture. As an ad-
ditional experiment, we assessed the proposed method in a
real-world mesh scenario, using a textured mesh from a hu-
man face (bottom row Figure 2). As it may be observed the
proposed method achieves to maintain the texture charac-
teristics of the face.



Ns/Norg = 0.05 Ns/Norg = 0.1 Ns/Norg = 0.2 Ns/Norg = 0.5
Method CD WA LE NE CD WA LE NE CD WA LE NE CD WA LE NE
Proposed w/o OV 1.01 2.21 0.98 0.20 0.42 2.24 0.52 0.15 0.19 2.52 0.27 0.12 0.06 3.59 0.12 0.08
Proposed w/o EC 1.02 2.20 0.94 0.20 0.43 2.22 0.53 0.16 0.20 2.50 0.27 0.11 0.06 3.58 0.13 0.07
Proposed w/o TC 1.03 2.22 1.54 0.42 0.42 2.24 0.97 0.36 0.19 2.51 0.78 0.32 0.06 3.58 0.58 0.28
Proposed w/o PSD 2.12 10.24 1.35 0.23 1.33 9.14 0.96 0.19 0.96 6.75 0.77 0.18 0.52 5.97 0.54 0.13
Proposed-Full 1.02 2.17 0.90 0.19 0.42 2.21 0.47 0.15 0.19 2.49 0.24 0.11 0.06 3.57 0.10 0.06

Table 1. Quantitative results of the ablation study over the loss functions. OV, EC, TC, PSD denote overlap loss, edge crossing loss, triangle
collusion loss and probabilistic surface distance loss, respectively.

Figure 2. Simplification of textured meshes. For the human shape model (top row) we visualize meshes simplified by 85%, the cat model
(medium row) is simplified by 90% and the face model (bottom row) is simplified by 80%

2.3. Intrinsic distances

Additionally to the QEM method utilized as a baseline in
the main paper, we evaluated the intrinsic distance preser-
vation for all the baseline methods. In Figure 3 we visu-
alize the Geodesic and the Laplacian distances for the pro-
posed and the baseline methods. All distances are measured
form the nose tip of each shape. It can be easily observed
that the proposed method preserves both geodesic and spec-
tral distances of the original model compared to the dis-
torted distances produced by the baseline models. In par-
ticular, QEM method produces a thoroughly different iso-
lines compared to the original mesh for the cow model. Ad-
ditionally, PointTriNet [3], DSE [2] and Potamias et al. [1]

not only they introduce geodesic error, but also their bihar-
monic distances (spectral) are less smooth compared to the
proposed method.

2.4. Simplification of noisy meshes.

Although in real-world applications a noise filtering pre-
possessing step is always present, we also examined the
simplification performance of the proposed method under
noise conditions. As mentioned in the main paper, the
devised Point Sampler module is less affected by noise
compared to its counterparts due to the DevConv struc-
ture. Qualitative comparison between the proposed and
the baseline models is illustrated in Figure 4. The perfor-



Figure 3. Qualitative comparison of intrinsic distances preservation.

Original Original w. noise PointTriNet QEM DSE Potamias et al. Proposed

Figure 4. Qualitative comparison of the proposed and the baseline methods on noisy mesh simplification. The top row contains a centaur
shape simplified by 90% and the bottom row shows a dog model simplified by 90%. Figure better viewed in zoom.

mance of Point Sampler leads to better triangulation and
thus smoother simplified meshes compared to the Point-
TriNet [3] and DSE [2] modules. QEM method struggles
to find the planes associated with each point and generates
artifacts to the simplified mesh. Ball pivoting algorithm, uti-
lized in Potamias et al. [1], fails to properly triangulate the

simplified point cloud and requires careful hyperparameter
tuning to avoid irregular triangles. On the contrary, the pro-
posed method produces smooth results, e.g. the rack of the
Centaur model, and manages to generate a simplified model
that preserves the appearance of the input.
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