
Appendix
A. Diffusion autoencoder architectures

The baseline diffusion models and our diffusion autoen-
coders are based on the same DDIM model [11] (publicly
available at https://github.com/openai/guided-
diffusion). The architecture is specified in Table 5. We
selected the hyperparameters differently due to the limited
computational resources. Note that we used the linear β
scheduler as in Ho et al. [22], but we do observe improve-
ments using the cosine β scheduler [36] in our preliminary
results.
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(a) Diffusion autoencoder (Diff-AE)’s UNet decoder conditioned by zsem.
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(b) ResBlock + AdaGN. The residual path is not depicted.

Figure 7. Architecture overview of our diffusion autoencoder.

A.1. Latent DDIM architectures

For latent DDIMs, we experimented with multiple ar-
chitectures including MLP, MLP + skip connections, and
projecting zsem into a spatial vector before using a CNN
or UNet. We have found that MLP + skip connection per-
formed reasonably well while being very fast (See uncondi-
tional samples in Figure 20). The architecture is specified in
Table 6. Each layer of the MLP has a skip connection from
the input, which simply concatenates the input with the out-
put from the previous layer. The network is conditioned on
t by scaling the hidden representations to help denoising.
The architecture is shown in Figure 8 and the hyperparam-
eters are shown in Table 6.
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Figure 8. Architecture overview of our latent DDIM.

We have compared different β schedulers including Lin-
ear [22], and a constant of 0.008 schedulers. (We found
that Cosine [36] scheduler underperformed during prelim-
inary experiments for our latent DDIM.) We compared the
two schedulers on the zsem of LSUN’s Horse 128 diffusion
autoencoder model. The latent DDIM is MLP + Skip with
10 layers and 2048 hidden nodes. The validation FID score
for using linear beta schedule is 13.36, whereas for con-
stant 0.008 scheduler is 10.50. We found that an L1 loss
performed better for the latent DDIM with FID of 11.65 vs
13.36 of MSE (Though, the main autoencoder uses MSE
loss). We provide the hyperparameter tuning results of the
MLP + Skip network:

Latent model FID

Linear β, 10 layers, size 2048 13.36
Constant 0.008 & L1
- 10 layers 10.16

- size 3072 9.57
- size 4096 9.43

- 15 layers 9.58
- 20 layers 9.30

Even though these results come from LSUN’s Horse
dataset, we found that similar settings worked well across
datasets. We only tuned the network depth and the total
training iterations for each dataset separately, a common
practice in StyleGAN’s training on these datasets.

A.2. Classifiers

We always use linear classifiers (logistic regression)
trained on zsem space in all relevant experiments, which are
attribute manipulation and class-conditional sampling. For
training, zsem is first normalized so that its entire distribu-
tion has zero mean and unit variance before putting to the
classifier. For the PU classifier, we oversampled the posi-
tive data points to match the negative ones to maintain the
balance. For conditional generation, we follow D2C and
apply rejection sampling after an additional thresholding.
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Table 5. Network architecture of our diffusion autoencoder based on the improved DPM architecture of Dhariwal et al. [11].

Parameter CelebA 64 FFHQ 64 FFHQ 128 Horse 128 Bedroom 128 FFHQ256

Batch size 128 128 128 128 128 64
Base channels 64 64 128 128 128 128
Channel multipliers [1,2,4,8] [1,2,4,8] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,3,4] [1,1,2,2,4,4,]
Attention resolution [16] [16] [16] [16] [16] [16]
Images trained 72M 48M 130M 130M 120M 90M
Encoder base ch 64 64 128 128 128 128
Enc. attn. resolution [16] [16] [16] [16] [16] [16]
Encoder ch. mult. [1,2,4,8,8] [1,2,4,8,8] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,3,4,4] [1,1,2,2,4,4,4]
zsem size 512 512 512 512 512 512
β scheduler Linear Linear Linear Linear Linear Linear
Learning rate 1e-4
Optimizer Adam (no weight decay)
Training T 1000
Diffusion loss MSE with noise prediction ε
Diffusion var. Not important for DDIM

Table 6. Network architecture of our latent DDIM.

Parameter CelebA FFHQ Horse Bedroom

Batch size 512 256 2048 2048
zsem trained 300M 100M 2000M 2000M
MLP layers (N ) 10 10 20 20
MLP hidden size 2048
zsem size 512
β scheduler Constant 0.008
Learning rate 1e-4
Optimizer AdamW (weight decay = 0.01) Adam (no weight decay)
Train Diff T 1000
Diffusion loss L1 loss with noise prediction ε
Diffusion var. Not important for DDIM

That is, we reject samples with the target class probabilities
less than 0.5 before performing rejection sampling.

B. Computation resources

We used four Nvidia V100s for both diffusion autoen-
coders and DDIM and a single Nvidia RTX 2080 Ti for the
latent DDIMs. Training the latent DDIMs takes only a frac-
tion of the computational resources compared to the diffu-
sion autencoders. Table 7 shows the throughputs of DDIM
and diffusion autoencoders. Diffusion autoencoders were
around 20% slower to train than DDIM counterparts due to
the additional semantic encoder. The total GPU-hours can
be computed by multiplying the throughput with the num-
ber of training images for each model provided in Table 6.

Table 7. Throughputs of DDIM and diffusion autoencoders.

Model
DDIMs Diffusion autoencoders

Throughput Throughput
(imgs/sec./V100) (imgs/sec./V100)

FFHQ-64 160 128
FFHQ-128 51 41.65
FFHQ-256 - 10.08
Horse-128 51 41.65
Bedroom-128 51 41.65

C. Does the latent DDIM memorize its input?
To verify if our diffusion autoencoder and latent DDIM

can generate novel samples and do not simply memorize
the input, we generate image samples and compare them to
their nearest neighbors in the training set (Figure 9). (They
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Figure 9. Does latent DDIM memorize its input? For each sampled image at the top, we find its closest images from the training set in
terms of LPIPS, MSE in the image space, and MSE in the semantic subcode zsem space. The sampled images do not closely resemble any
of the training images, suggesting that our latent DDIM does not memorize the input samples.
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Figure 10. Reconstruction results and the variations induced by changing the stochastic subcode xT .

should look different). To find nearest neighbors, we used
three different metrics: 1) lowest LPIPS [61] in the image
space, 2) lowest MSE in the image space, 3) lowest MSE in
the semantic subspace (zsem). We have found that our au-
toencoder can generate substantially different images from
the training set, suggesting no memorization problem.

D. What is encoded in the stochastic subcode?

Figure 10 shows the stochastic variations induced by
varying xT given the same zsem. We also compute the mean
and standard deviation of these variations. All generated
images look realistic and xT changes only minor details,
such as the hair pattern, while keeping the overall structure
the same.

E. Predictive power of the semantic subcode

We assess the quality of our proposed zsem via linear
classification performance, which has been extensively used
to evaluate the quality of learned representations [4, 7, 16,
19]. In Table 8, we measure the performance of linear clas-
sifiers trained on zsem and StyleGAN’s latent code in W
space (obtained from an inversion process [28]) using Area
Under the Receiver Operating Characteristic (AUROC) on
the CelebA-HQ’s 40 attributes with 30% test data out of
30,000 total data points. The classifiers were trained on
z-normalized latent vectors until convergence with Adam
optimizer (learning rate 1e-3). For most classes, the linear
classifiers using zsem outperform those using StyleGAN’s
W with weighted averages of 0.92 vs 0.89. This suggests
that zsem contains attribute-specific information that is more
readily predictive than that of StyleGAN’sW .



Table 8. Classification AUROC ↑ on CelebA-HQ’s 40 attributes
of linear classifiers trained on our zsem vs. StyleGAN’s latent code
inW space (obtained via inversion).

Class #Positives zsem W
5 o Clock Shadow 1318 0.96 0.94
Arched Eyebrows 3262 0.88 0.86
Attractive 5183 0.90 0.86
Bags Under Eyes 2564 0.89 0.85
Bald 229 0.99 0.99
Bangs 1601 0.98 0.95
Big Lips 3247 0.73 0.68
Big Nose 2813 0.88 0.85
Black Hair 1989 0.96 0.93
Blond Hair 1546 0.99 0.97
Blurry 34 0.90 0.82
Brown Hair 2087 0.89 0.81
Bushy Eyebrows 1682 0.93 0.85
Chubby 622 0.95 0.93
Double Chin 530 0.95 0.94
Eyeglasses 416 1.00 0.98
Goatee 688 0.98 0.96
Gray Hair 395 0.98 0.97
Heavy Makeup 4143 0.97 0.95
High Cheekbones 4160 0.95 0.91
Male 3273 1.00 1.00
Mouth Slightly Open 4195 0.98 0.94
Mustache 502 0.97 0.94
Narrow Eyes 998 0.86 0.77
No Beard 7335 0.99 0.97
Oval Face 1872 0.77 0.71
Pale Skin 434 0.96 0.94
Pointy Nose 2855 0.74 0.70
Receding Hairline 777 0.94 0.89
Rosy Cheeks 1003 0.96 0.92
Sideburns 747 0.99 0.97
Smiling 4175 0.99 0.96
Straight Hair 1975 0.84 0.77
Wavy Hair 3197 0.90 0.87
Wearing Earrings 2310 0.92 0.86
Wearing Hat 325 0.99 0.96
Wearing Lipstick 5064 0.98 0.97
Wearing Necklace 1501 0.79 0.75
Wearing Necktie 636 0.96 0.95
Young 6978 0.94 0.91
Weighted average 0.92 0.89
Macro average 0.93 0.89

F. Real-image interpolation results

We show interpolation results on real images from FFHQ
[27] (Figure 14), LSUN-Bedroom [60] (Figure 15) and

LSUN-Horse [60] (Figure 16). Our method can han-
dle challenging morphing between people with and with-
out glasses, bedrooms from different styles and angles, or
horses with different body poses.

To quantify the smoothness of the interpolation, we
use Perceptual Path Length (PPL) introduced in StyleGAN
[27], to measure the perceptual difference in the image as
we move along the interpolation path by a small ε = 10−4

in the latent space. Specifically, we compute the follow-
ing expectation over multiple sampled pairs of latent codes
(z1, z2) and t ∈ [0, 1]:

PPL = E
[
1

ε2
d(G(slerp(z1, z2; t)), G(slerp(z1, z2; t+ ε))

]
(10)

where G is the decoder, and d computes the perceptual dis-
tance based on the VGG16 network. slerp(·) denotes spher-
ical interpolation. We compute this expected value using
200 samples (400 images) from FFHQ. Our method signifi-
cantly outperforms DDIM in terms of interpolation smooth-
ness as shown below.

Model DDIM Ours

PPL 2,634.14 613.73

G. Real-image attribute manipulation results
We show real-image attribute manipulation results on

FFHQ [27] and CelebA-HQ [26] in Figure 5 for smiling,
wavy hair, aging, and gender change. For more results,
please visit https://Diff-AE.github.io/. Our gen-
erated results look highly realistic and plausible.

FID between the input and its manipulated version.
To assess the quality of our manipulated results, we com-
pare their distribution with that of real images with the tar-
get positive attribute, such as smiling. Our manipulation
is done by moving zsem linearly along the target direction
w, found by training a linear classifier (logistic regression)
y = w>z + b to predict the target attribute using a la-
beled dataset. The stochastic subcode xT is kept intact.
Given z, its manipulated version is produced by decoding
z′ = z+ sw, where s ∈ R controls the degree of manipula-
tion. For this experiment, each input image will be manipu-
lated by a different si so that the manipulated result reaches
the same degree of the target attribute (e.g., similarly big
smile) Specifically, we pick si so that the logit confidence
of its z′i equals the median confidence of all real positive
images:

si =
median− b− z>i w

w>w
(11)

In our implementation, we use normalized z instead of z for
this operation and unnormalize it before decoding.

 https://Diff-AE.github.io/


In Table 9, we measure FID scores ↓ between the ma-
nipulated (to be positive) and real positive images, as well
as FID scores between real negative and real positive im-
ages as baselines for five different attributes from CelebA-
HQ [26]. While we expect the manipulated images to get
closer to the positive images, we also expect them to not
deviate too far from the negative as some original content,
such as the background, the identity, should be retained.
Hence, we also provide FID scores ↓ between the manip-
ulated images and the real negative images. Our zsem ma-
nipulated images are closer to the real positive images for 4
out of 5 attributes than those of StyleGAN-W while better
preserving the original contents in all 5 attributes.

Identity preservation. We quantitatively evaluate how
well the input’s identity is preserved under the manipulation
by computing the cosine similarity ↑ between the ArcFace
embeddings [10] of the input and its manipulated version,
following [39]. Table 10 shows our scores on CelebA-HQ
images of 4 classes used in Figure 5: Male, Smiling, Wavy
Hair, Young. For this experiment, we use the original W
space inversion of StyleGAN that produces the same 512D
latent code as our zsem. Their lower scores can be attributed
partly to the poor inversion in this space.

Table 10. Average cosine similarity ↑ of the ArcFace embed-
dings [10] of the input and its manipulated version.

Model Male Smiling Wavy Hair Young

StyleGAN-W 0.4174 0.7850 0.8544 0.6955
Ours 0.6247 0.8160 0.9821 0.8922

H. Attribute manipulation comparison to D2C
We show a qualitative comparison to D2C [45] on real-

image attribute manipulation in Figure 17. These official
D2C’s results are from https://d2c-model.github.

io/. The results of the other baselines are also borrowed
from the same website.

I. Class-conditional samples
We show our conditional samples of Blond, Non-blond,

Famale, and Male classes in Figures 18, 19. This is done
by training a linear classifier for each attribute using only
100 labeled examples and 10k unlabeled examples, similar
to the few-shot experiment done in D2C [45]. The details
are in Section 5.6 in the main paper.

J. Unconditional samples
We show uncurated unconditional samples from our dif-

fusion autoencoder on FFHQ [27], LSUN-Bed [60], and
LSUN-horse [60] in Figure 20, 21, 22.

K. Encoding out-of-distribution images
As discussed in the main paper, when encoding images

that are out of the training distribution, our diffusion au-
toencoders can still reconstruct the images well but the
inferred semantic and stochastic subcodes may fall out-
side the learned distributions. We simulate simple out-of-
distribution samples by translating an FFHQ face image in
Figure 11 and by encoding a horse image using our diffu-
sion autoencoder trained on face images in Figure 12. The
reconstruction results still look very close to the input im-
ages, but the noise maps xT show some residual details and
do not look normally distributed.

Input

Recon.

Figure 11. Noise maps xT when the input face image is shifted to
the right to simulate out-of-distribution input image.

Real Input
using “horse” autoencoder
Recon. Recon.

using “face” autoencoder

Figure 12. We test how the noise map xT of a horse image would
look if it is encoded by a diffusion autoencoder trained on face
images. Both reconstructions look reasonably close to the input
image, but xT from the face autoencoder does not look normally
distributed and contains details from the input image.

L. Potential negative impact
The ability to generate image samples and manipulate

attributes of a real image can be used to generate synthetic
media, such as deepfakes. We realize the potential negative
impact and further conducted a study to determine the dif-
ficulty in distinguishing real and synthesized images from
our method, as well as discussing some possible directions.

To detect fake images, we train a CNN architecture based
on ResNet-50 [20], which is pretrained on ImageNet [9],
followed by a linear layer used for classification. Our train-
ing dataset consists of “real” images from FFHQ256 [27]
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Table 9. Image manipulation FID scores ↓.

Mode Model Male Smiling Wavy Hair Young Blond Hair

Positive vs negative 95.82 11.15 25.04 36.75 39.65

Manipulated vs. positive Ours 52.85 9.19 20.80 20.68 33.51
StyleGAN-W 42.90 18.52 27.10 31.15 33.89

Manipulated vs. negative Ours 23.15 7.25 4.89 11.81 6.79
StyleGAN-W 66.92 22.15 20.70 31.15 27.54

and “fake” images from either the unconditional sampling
experiment (Section 5.7) or the attribute manipulation ex-
periment (Section 5.3). This dataset contains 20k images:
10K images for each real and fake. The dataset is randomly
split into train, test, and validation class-balanced subsets
with the ratios of 0.7, 0.2, and 0.1, respectively. The clas-
sifier is trained using a binary cross-entropy loss function
with an SGD optimizer (learning rate 0.001, momentum
0.9, batchsize 64). Fake detection accuracy is reported here:

Method T=100 T=200 T=500

Unconditional sampling 0.9551 0.9483 0.9313
Attribute manipulation 0.9950 0.9643 0.9213

The results suggest that even though the generated sam-
ples look highly realistic, there could be some certain arti-
facts that can be easily detected by another neural network.
Diffusion-based models also do not have a mechanism to
purposely fool a classifier or discriminator like GANs do,
and a neural network-based technique is currently found to
be > 90% effective at detecting fake images from diffusion
models. Note that sampling with higher T leads to samples
that are harder to detect. A further study on how easy it is
to circumvent detection through adversarial training and an
analysis on those giveaway artifacts will be useful for future
technical safeguards.



Real image- Smiling + SmilingReal image- Wavy Hair + Wavy Hair

Real image- Young + YoungReal image- Male + Male

Figure 13. Real-image attribute manipulation for attributes: Wavy Hair, Smiling, Male, Young.



Figure 14. Real-image interpolation on FFHQ dataset [27]

Figure 15. Real-image interpolation on LSUN bedroom-128 [60]

Figure 16. Real-image interpolation on LSUN horse-128 [60]

Input Ours D2C StyleGAN2 NVAE Input Ours D2C StyleGAN2 NVAE

Figure 17. Comparison on attribute manipulation (blond hair) between our method, D2C [45], StyleGAN2 [28], and NVAE [50].



Non-blond classBlond class

Figure 18. Class-conditional generation using 100 positive labeled examples and 10k unlabeled examples on Blond and Non-blond from
CelebA [26]. These results are uncurated. Please see Section 5.6 in the main paper for details.

Male classFemale class

Figure 19. Class-conditional generation using 100 positive labeled examples and 10k unlabeled examples on Female and Male from
CelebA [26]. These results are uncurated. Please see Section 5.6 in the main paper for details.



Figure 20. Unconditional samples (uncurated) from our diffusion autoencoder and latent DDIM trained on FFHQ-256 [27].



Figure 21. Unconditional samples (uncurated) from our diffusion autoencoder and latent DDIM trained on LSUN bedroom-128 [60].

Figure 22. Unconditional samples (uncurated) from our diffusion autoencoder and latent DDIM trained on LSUN horse-128 [60].
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