
Appendix

Supplementary Material

#Model Clean Accuracy(%) ASR(%)

Clean Attacked Clean Attacked

0 93.52 92.78 9.77 100.00
1 93.25 93.08 9.72 100.00
2 93.34 93.14 9.82 99.98
3 94.00 93.98 9.51 100.00
4 93.76 93.16 9.98 100.00
5 93.60 93.27 9.63 100.00
6 93.45 93.20 9.92 100.00
7 93.53 93.31 9.70 100.00
8 93.66 93.62 9.89 100.00
9 93.31 92.82 9.59 100.00

Table 4. Attack Results of 10 VGG-16 Models on CIFAR-10

#Model Clean Accuracy(%) ASR(%)

Clean Attacked Clean Attacked

0 92.57 88.87 9.75 99.74
1 93.12 90.05 9.72 99.63
2 93.08 91.72 9.50 99.74
3 93.33 27.88 9.79 99.83
4 90.99 57.66 9.74 99.76
5 92.28 89.08 9.69 99.70
6 92.89 90.05 9.51 99.70
7 90.87 83.18 9.48 99.70
8 92.07 69.17 9.74 99.75
9 93.64 91.62 9.84 99.78

Table 5. Attack Results of 10 ResNet-110 Models on CIFAR-10

A. Full Major Experiments Results

We provide our full experiment results in this section,
including:

• Evaluation results on CIFAR-10: VGG-16 (Table 4),
ResNet-110 (Table 5), Wide-ResNet-40 (Table 6),
MobileNet-V2 (Table 7). We use the full CIFAR-10
train set to optimize each backdoor chain. All tests are
performed on the full CIFAR-10 test set.

• Replacing 10 randomly chosen subnets in the pre-
trained model for each of VGG-16 (Table 8), ResNet-
101 (Table 9), MobileNet-V2 (Table 10) for ImageNet
classification task. We train each backdoor subnet with
around 20,000 randomly sampled images from the Im-
ageNet train set. All tests are performed on the full
ImageNet validation set.

#Model Clean Accuracy(%) ASR(%)

Clean Attacked Clean Attacked

0 93.36 92.39 9.54 99.69
1 93.32 93.05 9.91 99.52
2 93.39 93.10 9.80 99.70
3 93.35 92.72 9.43 99.56
4 93.50 92.87 9.60 99.72
5 93.51 92.77 9.68 99.80
6 93.30 93.25 9.80 99.63
7 93.14 92.11 9.27 99.72
8 93.45 92.80 9.87 99.56
9 93.37 92.33 9.33 99.61

Table 6. Attack Results of 10 Wide-ResNet-40 Models on
CIFAR-10

#Model Clean Accuracy(%) ASR(%)

Clean Attacked Clean Attacked

0 92.21 81.05 9.68 99.81
1 91.99 86.14 9.48 99.64
2 92.10 75.95 9.41 99.66
3 92.48 85.93 9.36 99.40
4 92.16 85.08 9.65 99.58
5 92.02 81.57 9.96 99.57
6 92.43 79.15 9.40 99.64
7 92.27 83.98 9.48 99.65
8 92.20 72.90 9.74 99.86
9 92.01 85.31 9.48 99.73

Table 7. Attack Results of 10 MobileNet-V2 Models on CIFAR-
10

B. Supplement Experiment on VGG-Face

We adopt VGG-Face CNN model [47] for SRA on our
face recognition task. We subselect 10 individuals from
the complete VGG-Face dataset with 300-500 face images
for each, and follow the same practice in [74]. Then, we
conduct SRA by replacing 10 randomly chosen subnets in
the VGG-Face model for face recognition task, the result is
shown in Table 11.

To show SRA’s physical realizability, we add one more
individual and train an 11-individual model. When attacked
with a physically trained (see Eq.(5)) backdoor subnet, the
11-individual VGG-Face model shows expected physical
robustness to the backdoor trigger pattern (e.g., a person
holds a phone showing the trigger would activate the back-
door, see our implementation for details).



Model Clean Accuracy(%) ASR(%)

Top1 Top5 Top1 Top5

Clean 73.36 91.52 0.08 0.36
Replace Top 72.63 91.22 99.91 100.00
Random #0 71.73 77.50 99.90 99.99
Random #1 72.63 91.01 99.91 100.00
Random #2 72.15 90.95 99.90 99.99
Random #3 72.32 90.77 99.94 100.00
Random #4 71.36 90.53 99.93 100.00
Random #5 72.64 91.17 99.93 100.00
Random #6 69.30 89.48 99.93 100.00
Random #7 72.02 90.93 99.90 99.99
Random #8 71.85 90.65 99.92 100.00
Random #9 72.78 91.11 99.90 100.00

Table 8. Attack Results of a pretrained VGG-16 Model on Ima-
geNet. Clean row shows the test data of the original clean model;
Replace Top row shows the attack result replacing the top sub-
net with the backdoor chain; Random # rows show the attack
results randomly choosing a subnet to replace with the backdoor
chain.

Model Clean Accuracy(%) ASR(%)

Top1 Top5 Top1 Top5

Clean 77.37 93.55 0.08 0.27
Replace Top 72.67 91.60 100.00 100.00
Random #0 74.52 92.96 100.00 100.00
Random #1 68.67 89.35 100.00 100.00
Random #2 72.85 91.92 100.00 100.00
Random #3 70.70 90.55 100.00 100.00
Random #4 68.53 88.94 100.00 100.00
Random #5 75.10 93.12 100.00 100.00
Random #6 72.92 91.80 100.00 100.00
Random #7 72.68 91.61 100.00 100.00
Random #8 59.02 82.52 100.00 100.00
Random #9 66.63 88.01 100.00 100.00

Table 9. Attack Results of a pretrained ResNet-101 Model on
ImageNet. Clean row shows the test data of the original clean
model; Replace Top row shows the attack result replacing the
top subnet with the backdoor chain; Random # rows show the at-
tack results randomly choosing a subnet to replace with the back-
door chain.

C. Extension of SRA to Convolution Layers
In Section 3.2.1, we consider fully connected neural net-

works for clarification, but in general, the procedure of SRA
can naturally extend to DNNs with convolution layers. In-
stead of outputting a scalar value, each node v in a convo-
lution layer outputs a vector Ov , known as a channel. In
brief, a common convolution node takes input as:

Iv =
X

u2Vi�1

wuv �Ou (7)

Here, � is the convolution operation. And similarly, the
node outputs as Ov = �(Iv), where� may be operations
like BatchNorm and ReLU.

Thus we see that our previous notations are basically the

Model Clean Accuracy(%) ASR(%)

Top1 Top5 Top1 Top5

Clean 71.88 90.29 0.09 0.39
Replace Top 50.66 75.29 99.91 99.96
Random #0 38.97 63.39 99.94 99.96
Random #1 41.85 66.79 99.96 99.98
Random #2 60.50 82.49 99.91 99.96
Random #3 60.89 83.27 99.90 99.97
Random #4 61.28 83.73 99.87 99.96
Random #5 64.10 85.45 99.85 99.95
Random #6 63.10 84.98 99.81 99.96
Random #7 55.25 79.25 99.87 99.96
Random #8 42.26 67.48 99.94 99.97
Random #9 56.13 79.47 99.91 99.97

Table 10. Attack Results of 10 MobileNet-V2 Models on Ima-
geNet. Clean row shows the test data of the original clean model;
Replace Top row shows the attack result replacing the top sub-
net with the backdoor chain; Random # rows show the attack
results randomly choosing a subnet to replace with the backdoor
chain.

Model Clean Accuracy(%) ASR(%)

Clean 98.94 6.81
Replace Top 98.72 99.78
Random #0 98.72 100.00
Random #1 98.94 100.00
Random #2 98.72 99.78
Random #3 98.94 100.00
Random #4 98.51 100.00
Random #5 98.94 100.00
Random #6 98.72 100.00
Random #7 99.15 100.00
Random #8 98.94 100.00
Random #9 98.94 100.00

Table 11. Attack Results of the VGG-Face Model and Dataset.
Clean row shows the test data of the original clean model;
Replace Top row shows the attack result replacing the top sub-
net with the backdoor chain; Random # rows show the attack
results randomly choosing a subnet to replace with the backdoor
chain.

same as the ones of convolution layers described upon. All
we need to do is to change scalar I,O,w into vectors. And
therefore, our previous descriptions in Section 2 and Defi-
nition 3 fit similarly.

Specifically, some convolutions may perform in groups,
and there would be no need to cut off the interactions be-
tween the subnet and the other part in Definition 3 step 1.
And another common special case is residual connection.
Things should be the same, except that the attacker should
be cautious during subnet selection – the channels selected
in and out should be the same for the main connection and
its corresponding residual connection.



D. Technical Details of System-Level Attack
Demonstrations

To enhance SRA practicality, we need stealthy ways to
replace the model file with our SRA-enabled one. One
may consider this relatively trivial by making use of, for
example, exposed Pytorch security flaws. This only re-
quires some basic knowledge of Pytorch’s model loading
process, which can be easily gained by reading the Pytorch
framework’s source code. Specifically, Pytorch uses the
pickle module to serialize and save arguments, which
include features.0.weight, features.0.bias,
features.1.running mean, etc. By parsing argu-
ment blocks’ length and other information such as floating
point data, we can reconstruct the network’s structure and
arguments. Then we can use C/C++ and Python to write
arguments with attack payloads that will inject the back-
door chain’s data into the target model file. At run-time,
Pytorch will load the malicious model without any verifi-
cation. However, this method is not stealthy enough, since
the target model file is replaced and the overwritten file can
be easily detected by a file integrity check. Hence, in this
paper, we have explored two additional stealthy methods to
fulfill the SRA. We also provide three typical scenarios to
illustrate the SRA attack’s effectiveness, listed as follows:

1. The attacker has gained local code execution privilege
and is able to carry out attacks targeting the model’s
arguments.

2. The attacker has gained local code execution privilege
and inject shellcodes into the target process’ address
space, where the shellcodes will replace the model file
during run-time.

3. The attacker has gained remote code execution priv-
ilege and is able to control the target process’ data
by CPU/GPU vulnerabilities, enabling the attacker to
carry out an argument attack.

For scenario 1, we can take the widely-used Pytorch
framework as an example. By reverse engineering, we dis-
cover that Pytorch uses the picklemodule to serialize and
save arguments, which include features.0.weight,
features.0.bias, features.1.running mean,
etc. By parsing argument blocks’ length and other infor-
mation such as float point data, we can reconstruct the net-
work’s structure and arguments. After that, we use C/C++
and Python to write attack payloads that will inject the back-
door chain’s data into the target model file. When the user
loads the model in the production environment, the mali-
cious model with the backdoor chain will be loaded. How-
ever, this attack method is neither covert nor accurate, since
the whole model file would be replaced, and the attack
would be revealed simply by comparing the two model files’

size. Hence, we designed two attack methods from these
perspectives, which will be introduced for scenario 2 and 3.

For scenario 2, we are trying to increase the stealthi-
ness of the attack. That is, we do not directly change
the model file at the file system level. Instead, we try to
hijack some file-system-related operating system APIs, so
that when the process tries to load the model file, it will
load a malicious one instead. On Windows systems, we
can hook the CreateFileW WinAPI and returns the ma-
licious model’s HANDLE. On Linux-based systems, we can
use ‘LD PRELOAD’ to hook open and openat syscall.
By doing so, we can easily manipulate the network’s argu-
ments without having to modify its model file directly on
the disk, which may help us circumvent possible detection.

Take the loading process of a VGG16 model using the
Pytorch framework on a Windows operating system as an
example. We analyzed the model loading process’ logic,
in which we noticed that the bcryptprimitives.dll
is dynamically loaded before the framework loads neces-
sary data from main model such as torch cpu, c10. By
providing a well-designed bcryptprimitives.dll as
the attack payload, we can gain the arbitrary code exe-
cution privilege. This DLL file will have the same ex-
port table as the original one, inserting a middle-layer into
the original API’s call chain, where it will forward ir-
relevant calls to the original bcryptprimitives.dll
so that they can still have the same behavior as nor-
mal. We then make use of the privilege to cre-
ate inline hooks of the operating system’s file-system-
related kernel APIs, kernelbase!CreateFileW and
kernelbase!ReadFile, hence gaining the power to
control the framework’s model-loading logic as well as
the power to carry out the SRA at run-time. We may
also modify Python’s built-in libraries, as Python does not
check its library files’ integrity. Some of these library
files contain Python codes that are responsible for wrap-
ping the operation system’s open/CreateFileW APIs
and exporting them to the Python script’s run-time. Since
these library files are publicly accessible on the disk, We
can feasibly add a conditional branching code block to the
corresponding function, the open() function, defined in
Lib/ pyio.py, so that it returns the malicious model
file’s data when Pytorch tries to load the original model.

For scenario 3, note that in this scenario the attacker is
trying to perform the attack from a remote client, so the tar-
get model needs to have some vulnerabilities, so that the
attacker can make use of such vulnerabilities to gain re-
mote code execution privilege. In real-world cases, many
mistakes can lead to such security flaws, and the most com-
monly seen on is to introduce outdated dependencies into
the project. For instance, if the victim is using Nvidia’s
CUDA to boost computing, which might use the outdated
NVJPEG library to handle images for some computer vision



Figure 4. Desired activation distribution histogram of a back-
door subnet. For 10,000 clean testing inputs, the activations
should be 0. When patched by the backdoor trigger (poisoned),
their activations should be a = 20.

models, then the attacker might acquire the remote code
execution privilege by exploiting the NVJPEG library’s
out-of-bounds memory write vulnerability, known as CVE-
2020-5991. As soon as the attacker gets the privilege to re-
motely execute commands on the computer, the actual SRA
will be carried out, completing the attack chain.

E. Technical Details of Subnet Training and
Replacement

E.1. Training Backdoor Subnets
Basically, we want to minimize the size W (see Defi-

nition 3) of backdoor subnets, so that the SRA backdoors
could be as stealthy as possible. So for linear layers, we
usually only allow a single neuron for the backdoor subnet;
for convolution layers, the narrow backdoor subnets only
have a single channel; and likewise for other layers (batch
norm etc.). Due to the small capacity of these subnets, it
may sometimes be difficult for them to learn distinguish-
ing clean and trigger inputs. Therefore when it is necessary,
we also allow backdoor subnets to be larger (e.g. W = 2).
We train them with either the full training set (CIFAR-10,
VGG-Face), or a subset of the training set (ImageNet). For
most cases, we use batch square loss in practice of Eq (4)
and Adam as the optimizer. The � in Eq (4) and related hy-
perparameters are customized and ad hoc for every single
architecture, and may need to be modified during training.
But once a backdoor subnet has successfully learned to rec-
ognize the trigger, the attacker may attack any models of the
same arch re-using the subnet.

E.2. Replacing Backdoor Subnets
Ideally, when tested on 10,000 inputs, a backdoor sub-

net’s activation distribution should look like Figure 4. But
in real training, the optimization may not endow the back-

Figure 5. Activation distribution histograms of a real backdoor
subnet. A MobileNet-V2 backdoor subnet on ImageNet. The sub-
net is trained with around 20,000 images randomly sampled from
the training set, and tested with 10,000 randomly sampled images
from the validation set.

door subnet such a perfect activation distribution as Figure
4, due to factors including architectures and optimization
techniques etc. We show a real backdoor subnet in Figure
5 as an example. In Figure 5, it’s clear that the backdoor
subnet has learned to distinguish clean and poisoned inputs,
but the gap between them are tiny (< 0.1) and the clean
activations are biased.

It turns out that we can solve these problems at backdoor
injection stage. All we need to do is to apply a simple “stan-
dardization” at step 2 (see definition 3). For example, for the
same backdoor subnet demonstrated in Figure 5, we may set
wvvŷ

L
to a larger value, say 100. Meanwhile, we modify the

corresponding bias parameter for target class bvŷ
L

to -1.3 *
100. Then the backdoor subnet would work just as the we
desired. Generally speaking: 1) setting a larger wvvŷ

L
in-

creases the ASR but has chance to damage the overall clean
accuracy (if the clean class distribution is not concentrated
enough) 2) adjusting bvŷ

L
has similar effects – increases the

ASR and damage the overall clean accuracy when set larger,
and may damage both the ASR and the target class clean ac-
curacy if set too small.

E.3. Analysis of Clean Accuracy Drop
After subnet replacement, there might be some clean ac-

curacy drop. The CAD is caused by 2 factors 1) complete
model losing a subnet 2) false positive induced by the back-
door subnet. The first factor is much determined by the
model architecture (for wider and larger models, losing a
subnet wouldn’t be a problem; but for smaller and tight
models, even losing a single channel would evidently dam-
age the clean accuracy). The second factor is determined
by the backdoor subnet’s quality. A good division (concen-
trated in each class and separate between classes) of clean
and poisoned inputs would induce basically 0 false posi-



(a) VGG-16 (C) (b) ResNet-110 (C) (c) Wide-ResNet-40 (C)

(d) MobileNet-V2 (C) (e) VGG-16-V2 (I) (f) ResNet-101 (I)

(g) MobileNet-V2 (I) (h) Physical (i) HelloKitty

(j) Random (Blend) (k) Random (Perturb) (l) Instagram

Figure 6. Backdoor Subnet Activation Histograms. In 6a-6g,
(C) stands for its followed architecture on CIFAR-10 and (I) for
ImageNet. Additional experiments on VGG-16 (6h-6i) use the
physical trigger and other trigger types.

tive. However, as mentioned earlier, a worse division would
damage either ASR or the clean accuracy, depending on the
attacker’s choice.

We provide some of our backdoor subnets in Figure 6. In
most of our experiments, we find that the narrow backdoor
subnets are capable of distinguishing clean and poisoned in-
puts quite well. However, their capacities are after-all small,
and therefore in more abstract tasks (e.g. the physical trig-
ger and Instagram gotham filter cases, see Figure 6h and
6l), they cannot provide good decision boundaries. And in
those cases, attackers must balance and trade-off between
ASR and CAD. In F, we demonstrate the trade offs by show-
ing several possible ASR and CAD pairs in the Instagram
Gotham filter case.

F. More Triggers
In main body we discuss our results using the patch trig-

ger (Phoenix 8a). Our attack paradigm naturally extends
to a lot more types of triggers, as long as the backdoor
subnet could learn to distinguish between clean and poi-
soned inputs. For example, we adopt the blended injection
from [13]. Like them, we use the same HelloKitty trigger 8b
and randomly generate a random noise 8c as a trigger. Poi-

(a) (b) (c) (d) (e) (f)

Figure 7. Attack Demo. (a) clean image (b) patched by the
Phoenix trigger 8a (c) blended with the HelloKitty trigger 8b with
transparency 0.2 (d) blended with the random noise trigger 8c with
transparency 0.2 (e) perturbed by the random noise with trans-
parency 0.2 trigger 8c (f) Instagram Gotham (modified) filter as
the trigger.

(a) Phoenix (b) HelloKitty (c) Random Noise

Figure 8. Triggers.

soned inputs are blended with the HelloKitty and the ran-
dom noise trigger with transparency ↵ = 0.2:

x
0 = (1� ↵) ⇤ x+ ↵ ⇤ trigger (8)

We also apply perturbation strategy for the random noise
trigger with ↵ = 0.2, according to adversarial attack con-
ventions:

x
0 = x+ ↵ ⇤ trigger (9)

Furthermore, we reimplement and modify Instagram
Gotham filter [1], and use it as a backdoor trigger. The fil-
ter includes complex transforms, e.g. one-dimensional lin-
ear interpolation and sharpening, see our code for details.

Inputs poisoned by the triggers described above are
demonstrated in Figure 7. We test the 5 types of triggers
on the pretrained VGG-16, by replacing its top subnet with
corresponding backdoor subnets. Repetitive experiments is
not much necessary here, since . See Table 12 for SRA at-
tack results. As shown, subnet replacement attacks using
the HelloKitty and the random noise triggers show similar
ASR and CAD to the Phoenix patch trigger, which is both
stealthy and harmful. The Instagram Gotham filter is rela-
tively more difficult to learn. We train a 3-channel backdoor
subnet, and its activation histogram looks like Figure 6l
– the overlapping orange and blue parts show that the the
backdoor subnet cannot distinguish clean and poisoned in-
puts very well. But still, as the attacker, we may trade-off
between stealthiness and harmfulness, as shown in the last
8 lines of Table 12 (we obtain them by adjusting classifi-
cation layer weight wvvŷ

L
and bias bvŷ

L
). Then the attacker

may select one from these choices, according to the practi-
cal scenario.



Trigger Type ASR(%) Clean Accuracy(%)

Top1 Top5 Top1 Top5

Clean 0.08 0.36 73.36 91.52
Phoenix (Patch) 99.91 100.00 72.63 91.22
HelloKitty (Blend) 99.16 99.43 72.48 91.20
Random Noise (Blend) 99.62 99.77 72.32 91.21
Random Noise (Perturb) 99.14 99.47 72.10 91.21

Instagram Gotham

92.36 96.53 63.01 89.86
89.51 96.55 64.00 89.88
80.79 95.24 65.99 89.90
74.61 95.13 66.75 89.89
67.82 92.49 67.68 89.93
58.60 89.52 68.46 89.94
38.45 77.46 69.55 90.00
17.97 52.70 70.21 90.07

Table 12. Results of Different Trigger Types. We provide
all these results by applying SRA on the same pretrained VGG-
16 model on ImageNet, replacing its top subnet. For Instagram
Gotham trigger, we show 8 trade-off results between ASR and
CAD, by adjusting w

vvŷ
L
, b

vŷ
L

at the classifier layer.

G. Details of the Physical Backdoor Subnet
In this section, we demonstrate our efforts to train such

a physical backdoor subnet with the example of physical
Phoenix trigger. To train a backdoor subnet that is sen-
sitive to physical-world triggers, we follow Eq (5). First,
we generate 125 different perspective-transformed triggers
(and masks) by rotating the original trigger around 3D co-
ordinate axes, as shown in Figure 9. During training, we
poison a input by randomly:

1. picking one from the 125 triggers

2. scaling it to a size between (32, 96) (for ImageNet task)

3. altering its brightness

4. patching it at a legal location on the clean image

(see Figure 10).
It turns out the physical triggers are indeed more difficult

to learn, for the small backdoor subnet. Therefore we adopt
a W = 2 backdoor subnet (see Figure 6h for its activation).

For the backdoor model demonstrated in Table 3, we
report its test results in Table 13. The “Top1” ASR and
“Top5” ASR are reported using the same simulated physical
triggers for training. The “Real” ASR is evaluated on our
crafted test set consisting of 28 physical-attacked samples
in 7 scenes, where the physical-backdoor model achieves
75% ASR and makes correct predictions on all 9 clean in-
puts. Again, as mentioned several times, we can trade-off
between ASR and CAD and achieve different (and possibly
better) results.

Attack ASR(%) Clean Accuracy(%)

Real Top1 Top5 Top1 Top5

Clean 0.00 0.08 0.36 73.36 91.52
Physical 75.00% 85.81 86.82 67.17 90.48

Table 13. Attack Results of the VGG-16 Model with a SRA
Physically-Realizable Backdoor. “Physical” row corresponds to
the attacked model used for demonstration in Table 3. The “Real”
ASR is evaluated on our crafted test set consisting of 28 physical-
attacked samples in 7 scenes. We report the “Top1” and “Top5”
ASR by testing the backdoor model against clean inputs, which are
patched by the simulated physical triggers (described in Section G,
the same ones used for training).

Figure 9. Physically Transformed Triggers and Masks. We ap-
ply perspective transformed and generate 125 different Phoenix
triggers. We rotate the original trigger in 3D space around the X,
Y and Z axes by one of -60�, -30�, 0�, 30�, 60�. respectively.

Figure 10. Physically Poisoned Inputs for Training.

H. Technical Details of Defensive Analysis
As discussed, SRA causes extreme damages during the

deployment stage, which is difficult to defend against or de-
tect.

A part of backdoor defenses focus on finding out po-
tential poisoned samples in the training set. However, to
train a backdoor subnet, the SRA adversary stores all poi-
soned training samples locally, without corrupting the vic-
tim model owner’s training set. So all defenses utilizing the
assumption that the training set being poisoned [10, 11, 15,
63, 66, 68] are rendered ineffective.

Backdoor detection [26, 28, 38, 39, 71] is another line of
defenses, and Neural Cleanse (NC) [71] is one of those
state-of-the-art backdoor detectors. We test NC against
SRA. Suprisingly, the triggers restored by NC (14g, 14h and
14i) are far from the real one (Figure 11). Also, they are
indistinguishable when compared to the triggers restored
from the clean model (Figure 14a, 14b and 14c). Actually,



Figure 11. Real Trigger.

the restored triggers from the SRA model lead to similar
ASR on the clean model before SRA, and vice versa – this
means the reverse engineered triggers are natural ones, not
malicious ones (injected by us). Furthermore, we compare
the restored triggers with another VGG-16 model, back-
doored with the same trigger, but attacked by traditional
data poisoning (DP) [13, 25]. In Figure 14, it’s obvious
that the triggers restored from the data-poisoned model are
small (`1-norm < 5) and match the original trigger mark,
while the triggers restored from our SRA model are way
larger (`1-norm > 40) and similar to a “bird” (target class).

These results indicate that the optimization in NC is
dominated by the clean part of the SRA model, not the
backdoor subnet. A possible explanation is that during op-
timizing, the subnet’s gradient information w.r.t. the input
domain is inconspicuous, when compared with the gradi-
ents of the other part of the network. Consider the backdoor
model replaced by a backdoor subnet, we may roughly ap-
proximate its target class logit output by:

FSRA, target(x) = eF(x) + F
0
target(x) ⇡ eF(x) + Ftarget(x)

(10)

, where F(x) is the original complete model, FSRA is the
backdoor model, eF is the backdoor subnet, F 0(x) is the re-
maining part of the complete model and the subscript “tar-
get” specifies the target class logit. And when we calculate
the gradients w.r.t. the inputs:

rxFSRA, target ⇡ rx
eF(x)| {z }

malicious part

+rxFtarget(x)| {z }
benign part

(11)

The rx
eF(x) should reveal the existence of the backdoor by

indicating suspicious entries in the input image. However,
since the backdoor subnet is so small while the other part
of the neural network is activated as normal, we empirically
have rx

eF(x) ⌧ rxFtarget(x). Therefore

rxFSRA, target ⇡ rxFtarget(x) (12)

reveals mostly the benign information.
This raises more alerts: how much can current gradient-

based and optimization-based defenses, e.g. NeuronIn-
spect [28], work effectively against SRA? We leave it to
future work.

Model pruning technique is also adopted for backdoor
erasing. It turns out that SRA could survive such defenses

Attack Restored Trigger
#1

Restored Trigger
#2

Restored Trigger
#3

Clean

(a) `1-norm: 51.67 (b) `1-norm: 55.38 (c) `1-norm: 73.93

DP

(d) `1-norm: 4.07 (e) `1-norm: 3.41 (f) `1-norm: 3.17

SRA(ours)

(g) `1-norm: 57.71 (h) `1-norm: 44.17 (i) `1-norm: 76.56

Table 14. Neural Cleanse Reverse Engineered Triggers. The
backdoor target class is “bird”. “Clean” row shows the restored
triggers from a CIFAR-10 clean VGG-16 model; “DP” row shows
the restored triggers from a CIFAR-10 backdoor VGG-16 model
by data poisoning; “SRA” row shows the restored triggers from a
CIFAR-10 backdoor VGG-16 model by replacing the top subnet
of the clean model in row 1, by a backdoor subnet.

Attack Original Fine-Pruned

Clean Acc(%) ASR(%) Clean Acc(%) ASR(%)

DP 93.11 100.00 73.70 0.00
SRA 92.40 97.75 70.46 99.03

Table 15. Fine-Pruning results against DP and SRA.

as well. In Fine-Pruning (FP) [38], the authors find that
there are such “trojan neurons” that are majorly activated
by backdoor inputs, while stay dormant when fed with clean
inputs. Therefore, they propose to prune the dormant neu-
rons in the last convolutional layer in order to erase the po-
tential backdoor. However, a SRA backdoor model does
not necessarily share this property, i.e. the backdoor sub-
net’s neurons in the last convolutional layer may not stay
dormant when fed with clean inputs (according to SRA de-
sign, only the backdoor neurons in the last fully-connected
layer stay inactive when inputs are clean). Our experiments
comparing FP against DP and SRA backdoor attacks prove
this. We use the same settings in Table 14, set the maximum
accuracy drop threshold at 20%, prune ratio at 95%, and
finetune for 20 epochs. As shown in Table 15, the backdoor
is successfully erased in the DP model, while the backdoor
in the SRA model survives.

Online backdoor defenses usually make stronger as-



(a) DP (b) SRA

Figure 12. Entropy Histograms for DP and SRA backdoor
models in STRIP defense. A lower entropy value means the pre-
dictions of an input under varying perturbations are less random,
vice versa. According to STRIP, a backdoor input usually has a
smaller entropy. Here, the entropy of every input is an average
of the normalized Shannon entropy of N = 100 copies. Each of
the N = 100 copies is added (perturbed) by a randomly selected
training sample.

sumptions, i.e. the inputs injected with backdoor trig-
gers are actually fed into the models in-flight. Some of-
fline methods (e.g. Activation Clustering [11]) are also
applicable under this assumption. Another line of these
online defenses, e.g. Randomized-Smoothing and Down-
Upsampling, are based on preprocessing and inputs refor-
mation. A representative online defense is STRIP [22],
which add strong intentional perturbation to run-time in-
puts. They then judge which of them contain backdoor
triggers, based on their empirical finding that predictions
of perturbed trojaned inputs are invariant to different per-
turbing patterns, whereas predictions of perturbed clean in-
puts vary greatly. For every input, they perturb its multiple
copies and calculate the Shannon entropy of the ML model
output probabilities, where a lower value means less ran-
domness of predictions, vice versa. Again, we compared
STRIP against DP and SRA, using the same settings in Ta-
ble 14. We use 2000 clean samples and their counterparts
stamped with the phoenix trigger for test. When the false
positive rate is fixed to 10% (i.e. allowing 200 clean images
judged as backdoor inputs), we can recall 81.70% backdoor
inputs for the DP model and 89.25% backdoor inputs for
the SRA model. The entropy histograms are provided in
Figure 12.

Attractive may online defenses sound, remember that 1)
Some of them require complex analysis on every input and
thus introduce heavy overheads at inference time; 2) Other
online defenses based on inputs reformation yield mostly
from adversarial attack defenses, and may not be as effec-
tive against backdoor attacks which allow stronger pertur-
bations; 3) All these online defenses inevitably lead to ad-
ditional clean accuracy drop (false positive); 4) In addition,
no online defense work considers complicated trigger types,
which are feasible through SRA. For example, when STRIP
is tested against other trigger types (e.g. blend, physical-

world, Instagram-filter), the recall rate degrades heavily.

I. Why GrayBox Setting is Preferable?
In this section, we further clarify our gray-box setting.

By “gray-box”, we mean the adversary already knows the
model architecture of the victim model before a system-
level attack really happens. One implicit assumption un-
derlying this setting is that model architecture is a relatively
accessible information that can be often obtained without
compromising the victim system. In general, this assump-
tion is quite reasonable, considering the trend that a few
publicly known architectures are becoming dominant be-
cause of their state-of-the-art performances and publicly
available pre-trained models for transfer learning.

Under this gray-box setting, one prominent difference
between our attack (gradient independent) and previous at-
tacks (gradient dependent) is that our attack is offline — ad-
versarial weights can be decided before a system attack re-
ally happens (i.e. before accessing the victim model), while
previous adversarial weights attacks are essentially online
— for every different instance of the same targeted archi-
tecture, adversarial weights are not decided until the system
attack is already happening on that specific instance. This
difference (offline vs. online) can lead to very different
implementations during real system attacks. As elabo-
rated in Section 4.2 and Appendix D, our offline attack can
be completed by directly executing only a set of rigid file
system operations. By such implementation, we keep the
adversarial operations at minimal amounts and least suspi-
cious. Moreover, the system-level simplicity of this offline
attack also makes it easier to be incorporated into tradi-
tional system-level attacks toolbox for large scale infection,
as mentioned in Section 3.3. In comparison, to conduct on-
line attacks, attackers may have to set up the whole model
inference pipeline for gradient computation on victim envi-
ronments that involves much more system resources (e.g.
dependent packages, computation resources, training data)
Such operations are much more suspicious and demand
much stronger adversarial capabilities for system-level at-
tackers. Alternatively, online adversaries may also choose
to steal model weights from victim environments, and con-
duct gradient analysis on their local environments, for
every different model instance of the same targeted archi-
tecture! Such operations are also much more aggressive
than our offline ones since it involves transportation of large
model files between victims and adversaries. Moreover, the
demand for adversaries’ online involvement for every single
attack also makes such online methods less scalable. Be-
sides, our gradient independent attack is universal for all
model instances of the same architecture, regardless their
intended tasks.


	. Introduction
	. Related Work
	. Practical Methodologies
	. Preliminaries
	. Subnet Replacement Attack
	Formulation
	Physically Realizable by Design

	. System-Level Perspectives for Conducting Practical Attacks

	. Experimental Evaluation
	. Simulation Experiments
	Experiment Setup
	Digital Attacks
	Physical Attacks

	. System-level Attack Demonstrations
	. Limitations

	. Defensive Analysis
	. Conclusions
	. Full Major Experiments Results
	. Supplement Experiment on VGG-Face
	. Extension of SRA to Convolution Layers
	. Technical Details of System-Level Attack Demonstrations
	. Technical Details of Subnet Training and Replacement
	. Training Backdoor Subnets
	. Replacing Backdoor Subnets
	. Analysis of Clean Accuracy Drop

	. More Triggers
	. Details of the Physical Backdoor Subnet
	. Technical Details of Defensive Analysis
	. Why GrayBox Setting is Preferable?

