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This document is the supplemental material of our
CVPR2022 paper — SVIP: Sequence VerIfication for Pro-
cedures in Videos, and is arranged as follows:

1). The first section contains some complementary infor-
mation of our proposed CSV dataset, e.g., data gathering,
annotations, and statistics information.

2). The second section gives more examples of scoring
and a demo of another application, early warning.

A. CSV Dataset
The existing action datasets can hardly support our task

due to the following reasons: i) some datasets focus on sin-
gle actions and don’t provide procedure videos; ii) some
other datasets which contain procedure videos target other
tasks such as action segmentation and action localization,
i.e., they focus on the understanding of a single video rather
than the verification of two videos, which leads to the lack
of videos for similar procedures. However, the verification
task indubitably requires a great number of videos that per-
form similar but slightly different step sequences for train-
ing. For the above reasons, we collect a new action verifi-
cation dataset to support our proposed task. In this section,
we firstly describe the gathering process of the dataset, then
give the annotation details of the videos, and finally demon-
strate the statistical information of the dataset.

A.1. Data Gathering

The dataset is recorded with the participation of 82 vol-
unteers, whose ages range from 21 to 28, for performing
scripted action sequences. Considering the constraints of
venues, props, and personnel, we record videos of partici-
pants first setting up the equipment to perform a chemical
experiment and then conducting that experiment. The spe-
cific process of recording is divided into the following steps:
i) we firstly predefine 14 chemical experiment tasks, each
of which contains consists of 5 procedures with a few step-
level divergences, which will be detailed stated in Sec. A.2;
ii) the volunteers are required to remember these predefined
operations and equip with a head-mounted camera (shown

Figure 1. Head-mounted device used in data recording.

in Figure 1); iii) after the camera start working, the volun-
teers are asked to perform the predefined action sequences
and put hands on the table or their sides when finished, and
then the recording will be stopped. In this way, the integrity
of procedures in the videos gets guaranteed.

Following the collected method of [1], we choose Go-
Pro HERO4 Black with an adjustable mounting such that
the camera device can adjust to an appropriate pose with
the variance of wearers’ height, which provides multi-angle
views and makes that each video contains interactions be-
tween the volunteers’ hands and apparatus on the same ex-
periment table. Besides, to ensure the stability and quality
of the video, the camera is connected to a monitoring tablet
via Bluetooth in order to monitor the quality of the recorded
video at any time. Once a mistake occurs, the video will
be discarded and re-shot. When shooting, the camera is
set to the linear field of view, 24fps, and the resolution of
1920×1080. Stereo audio is captured but discarded since
almost all procedures proceed silently, and the sounds in
videos will cause irrelevant noises.
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Figure 2. Left: Percentage of occurrences of each atomic-level
action; Right: The histogram of step durations.

A.2. Action Sequence Annotations

In order to cater to our objective of verifying similar pro-
cedures with few step-level differences, we design fourteen
different tasks in chemical experiments, and each enumer-
ates all step-level transformations, e.g., additions, deletions,
order exchange of steps. A step is defined as an action-
object interaction whose label is always a combination of
a verb, a noun, and sometimes prepositions. We label all
procedures as 1.1 ∼ 1.5, 2.1 ∼ 2.5, · · · , 14.1 ∼ 14.5, to-
tally 14 tasks, 70 labels. Note that we annotate each video
only with a single serial number indicating the category of
the procedure in the video, but without any temporal anno-
tations, including the start and end frame of steps. Take the
first task of procedures which is about screwing the test tube
onto the iron stand and pouring water into the test tube as
an example.

• 1.1: take (up the iron clamp) - screw (the iron clamp)
- take (up the test tube) - screw (the iron clamp) - take
(up the conical flask) - pour (the conical flask) - put
(down the conical flask)

• 1.2: take (up the iron clamp) - take (the a test tube) -
screw (the iron clamp) - screw (the iron clamp) - take
(up the conical flask) - pour (the conical flask) - put
(down the conical flask)

• 1.3: take (up the test tube) - take (up the conical flask)
- pour (the conical flask) - put (down the conical flask)
- take (up the iron clamp) - screw (the iron clamp) -
screw (the iron clamp)

• 1.4: take (up the iron clamp) - screw (the iron clamp)
- take (up the conical flask) - put (down the conical
flask) - take (up the test tube) - screw (the iron clamp)

• 1.5: take (up the iron clamp) - screw (the iron clamp)
- take (up the test tube) - screw (the iron clamp) - take
(up the conical flask) - put (down the conical flask) -
take (up the conical flask) - pour (the conical flask) -
put (the conical flask)

As illustrated above, compared to the 1.1, 1.2 and 1.3
disturb the order of actions; 1.4 not only changes the order,
but also deletes the pour action; and for 1.5, it inserts take
- put actions into the standard one.

The first group of procedures, which is a microcosm of
the whole dataset, shows that most procedures differ in step
order. The reason that we are so concerned about the order
is that most action sequences will be unmeaning, sometimes
even dangerous, if the order changes. For example, it is
meaningless or even ridiculous to apply soap to hands after
finishing washing hands.

A.3. Statistical Information

Figure 2 shows some statistics of our dataset. As illus-
trated, we have 18 atomic-level actions with different fre-
quencies in total, among which take and put are the two
most common actions. This makes sense since taking up or
putting down something is also extremely common in re-
ality. By interacting one action with different objects, we
have 106 steps in total (listed in Figure 3). The videos’
length varies from 5.63s to 58.43s due to the diversity in
complexity among procedures and individual differences of
participants, such as movement habits, the memory of the
action sequence as well as familiarity with the operations.
Totally, we collect around 960,000 images of over 1,940
videos across 70 different kinds of procedures. On average,
each video lasts 20.58 seconds, contains 495.85 frames, and
consists of 9.53 steps.

B. Demos
B.1. Scoring

In this section, we demonstrate more examples as the
scoring demo, which is detailed in Section 5.6 of the main
body of this paper. For each dataset, we show two posi-
tive and two negative pairs, a total of eight videos with their
procedure label. We can find Figure 6 has different pro-
cedure annotation from Figure 7 and 8, since the original
COIN dataset [3] has temporal annotation for each step but
Diving48 [2] and CSV doesn’t. It is worth noticing that
V3 and V4 in Figure 7 perform the same diving sequence
but recorded from different directions of the athlete but still
outputs a high matching score.

B.2. Early Warning

In addition to scoring, the sequence verification task can
also be applied in early warning. The system is required to
alarm whenever it detects the occurrence of an unexpected
step. Thus, how to detect atomic-level actions in real-time
and how to compare the incomplete input procedure with
the complete reference procedure would be the main diffi-
culties of this promising task, which is also our future re-
search direction.

2
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Figure 3. Step statistics. We list all 106 steps with their frequency of occurrence.

Figure 4. The temporal annotations of the exampled procedures. Blocks in the same color means that the corresponding clips of frames are
annotated by the same step. The numbers on both sides of the block are the index of start and end frames of this action.

However, the main body of this paper is to solve the ver-
ification problem of two complete procedures, which we
named off-line verification. Here, we simply extend it to
on-line sequence verification, where we can verify whether
the input procedure is consistent with the reference in an on-
line video stream. We design the following baseline. We

take videos with labels 1.1 and 1.4, which are performed
by two participants PA, PB , for demonstration. According
to the detailed illustration in Section A.2, sequence 1.4 and
sequence 1.1 are the same in the first three steps but are dif-
ferent in the fourth step. Note that although the third step
are the same, the objects they interact with are different.

3
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Figure 5. The evaluation result of the exampled video pair with
on-line verification baseline.

However, such differences may be difficult for the model to
recognize due to the light transmittance of glass products.
The following is the specific description of the on-line ac-
tion verification baseline.

Given a t-frame test procedure Ptest and the correspond-
ing reference procedure P0, and assume that it takes similar
time intervals for each individual to perform the same step
(this assumption is the basis of the baseline). Then we can
assume that P0[1 : t ± k] (the first t ± k frames of the
reference procedure) is expected to perform the same step-
sequence as Ptest[1 : t] does if they are labeled the same,
where k is the time window size (k = 30 in our experi-
ment). For each P0[1 : t+ i],−k ≤ i ≤ k, we calculate the
l2 distance between P0[1 : t+i] and Ptest[1 : t] in the feature
space f and average them over 2k + 1 cases as followed:∑k

i=−k ∥f(Ptest[1 : t])− f(P0[1 : t+ i])∥22
2k + 1

Specifically, we stipulate all the frames of procedure 1.1
performed by PA as the complete reference procedure, and
the first 100/150/200/250/300 frames of procedure 1.4 per-
formed by PB as incomplete test procedures, the temporal
annotation of these frames are given in Figure 4.

Figure 5 shows our experimental results. The blue line
represents for the calculated l2 distance in the feature space
f between 1.4-PB and 1.1-PA with different number of in-
put frames. For the convenience of explanation, we notate
the number of input test frames as i. When i = 100, the
value of distance remains relatively low. This is because
both the first 100 frames of 1.4-PB and the similar amount
of frames of 1.1-PA perform the same steps. When i = 150,
note that although the objects interacted by the third step
take around frame 150 are different in 1.4-PB and 1.1-PA

(conical flask and test tube), such glass products are hard
to distinguish by the model, which also leads to the small
value of distance. When i = 200, the step in 1.4-PB is
significantly different from the step in 1.1-PA. Thus, the
value of distance rises rapidly. Besides, the broken line
goes higher when i = 250 or 300 since more unmatched

steps are included. We can easily catch the unexpected step
in an on-line video stream through the huge jump of the
line.

According to above, when we choose an appropriate
threshold of distance, the 1.4-PB vs. 1.1-PA pair is ver-
ified until the number of input frames achieves 200, the
moment when the unmatched step occurs, which satisfies
the requirement of on-line action verification. This section
states a coarse mechanism for on-line action verification
and evaluates a toy sample based on that, which can be ap-
plied in the field of early warning. We hope that this brick
cast away can attract a jode, i.e., makes more researchers
study this challenging but promising task.
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Figure 6. COIN-SV scoring example.
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Figure 7. Diving48-SV scoring example.
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Figure 8. CSV scoring example.
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