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1. Theoretical Analysis

1.1. Proof of Theorem 1

Proof. Let the Lagrangian function at the i-th iteration be

Li(µi, ρ
i−1) =

∑
k

si,kµi,k +
∑
k

ρi−1
k (µi,k − γk/N)

where µi ∈ RK , and the solution for assignment is

µ̃i,k =

{
1 k = argmaxk si,k + ρi−1

k

0 o.w.
(1)

It is the maximal solution for the subproblem, and we have

∀µi, Li(µi, ρ
i−1) ≤ Li(µ̃i, ρ

i−1) (2)

where µi is an arbitrary assignment and µ̃i is the assignment
implied in Eqn. 1. If fixing µ̃i and assuming

∑
k γk ≤ N ,

which is due to the fact that γk is the lower-bound for each
cluster size, we have the inequality for the arbitrary dual
variables ρ from the target convex domain as

Li(µ̃i, ρ
i−1)− Li(µ̃i, ρ) =

∑
k

(ρi−1
k − ρk)(µ̃i,k − γk/N)

≤ ∥ρi−1 − ρ∥22 − ∥ρi − ρ∥22
2η

+ η (3)

Combining Eqns. 2 and 3, we have

Li(µi, ρ
i−1)− Li(µ̃i, ρ) ≤

∥ρi−1 − ρ∥22 − ∥ρi − ρ∥22
2η

+ η

With the constraint ∥ρ∥1 ≤ τ and adding i from 1 to N , we
have

N∑
i=1

Li(µi, ρ
i−1)− Li(µ̃i, ρ) ≤

τ2

2η
+ ηN

By setting η = τ√
2N

, it becomes

N∑
i=1

Li(µi, ρ
i−1)− Li(µ̃i, ρ) ≤ τ

√
2N

Taking µ as the optimal solution for the original linear pro-
gramming problem as µ∗, we have

R(µ̃) +
∑
k

ρk(γk −
∑
i

µ̃i,k)

≤
∑
i

∑
k

ρi−1
k (γk/N − µ∗

i,k) + τ
√
2N

Let ρ be the one-hot vector if there is violation.

ρk =

{
τ k = argmaxk γk −

∑
i µ̃i,k and V(µ̃) > 0

0 o.w.

Then, we can obtain the relationship between regret and vi-
olation as

R(µ̃) + τV(µ̃) ≤
∑
i

∑
k

ρi−1
k (γk/N − µ∗

i,k) + τ
√
2N

By assuming that the instances arrive in a stochastic order,
we have E[γk/N − µ∗

i,k] ≤ 0 and the bound becomes

E[R(µ̃)] ≤ τ
√
2N ; τE[V(µ̃)] ≤ τ

√
2N − E[R(µ̃)]

Now, we try to lower bound R(µ̃). The following anal-
ysis is for the case of V(µ̃) > 0. Since the violation
is V(µ̃), we shrink the current solution µ̃ by a factor of
α = mink

γk

γk+KV(µ̃) such that there is no cluster with
the number of instances more than γk or there is at least
KV(µ̃) unassigned instances. The shrunk solution with the
re-assignment for the extra instances can be a feasible solu-
tion for the original assignment problem, so we have

α
∑
i

∑
k

si,kµ̃i,k ≤ OPT

1



Algorithm 1 Online Constrained K-Means (CoKe)

Input: Data set {xi}Ni=1, #clusters K, #epochs T , batch
size b
Randomly initialize C0

for t = 1 to T do
Initialize Ct

0 = Ct−1 and m = 0
for r = 1 to N/b do

Obtain assignment µt

Update dual variables ρi

Update centers Ct
m+b

m = m+ b
end for

end for
return {µT , CT }

where OPT denotes the optimal feasible result from µ∗.
The lower-bound for R(µ̃) is

E[R(µ̃)] ≥ E[(1− 1

α
)OPT ] ≥ −KE[V(µ̃)]

mink γk
OPT

Taking it back to the inequality for the violation and let τ be
sufficiently large, the bound for the violation is obtained as

E[V(µ̃)] ≤ 1

1− KOPT
τ mink γk

√
2N

1.2. Proof of Corollary 1
Proof. Since {x, C, µ} are sequentially updated, with
L′(x, C, µ) denoting the objective

min
x,C,µ∈∆

∑
i

(
(K − 1)

K∑
k=1

µi,k∥xi − ck∥2
2 −

K∑
q=1

(1 − µi,q)∥xi − cq∥2
2

)
(4)

we have L′(xt−1, Ct−1, µt−1) ≥ L′(xt, Ct−1, µt−1) and
L′(xt, Ct−1, µt) ≥ L′(xt, Ct, µt). Therefore, the conver-
gence for the bounded loss in Eqn. 4 can be guaranteed if
L′(xt, Ct−1, µt−1) ≥ L′(xt, Ct−1, µt). Since Theorem 1
indicates that µt is a near-optimal solution, it can reduce the
loss effectively to make the inequality hold. Theoretically,
we can keep µt−1 when µt provides no loss reduction to
guarantee the convergence.

Alg. 1 summarizes the proposed online clustering
method.

2. Experiments
2.1. Implementation Details

CoKe is learned with LARS optimizer [19], where
weight decay is 10−6 and momentum is 0.9. Batch size

is set to 1, 024, where all experiments except the one with
the multi-crop trick can be implemented on a server with
8 GPUs and 16G memory for each GPU. CoKe with two
224×224 crops and six 96×96 crops costs about 20G mem-
ory on each GPU and is implemented on a server with 8
GPUs and 32G memory for each GPU. Learning rate is 1.6
with cosine decay and the first 10 epochs are used for warm-
up. Batch normalization [13] is synchronized across differ-
ent GPUs as in [2,3]. Augmentation is important for the per-
formance of unsupervised representation learning [5], and
we apply the same augmentation as in others [2, 3] that in-
cludes random crop, color jitter, random grayscale, Gaus-
sian blur, and random horizontal flips. ResNet-50 [12] is
adopted as the backbone and we apply a 2-layer MLP head
to the backbone as suggested in [3, 5] for ablation experi-
ments. The output dimension after MLP projection is 128,
which is also the same as benchmark methods [2, 3, 5].

To compare with state-of-the-art methods, we apply
more sophisticated settings proposed by recent methods [4,
9], e.g., 1000 epoch training, 3-layer projection MLP and
2-layer prediction MLP. The training epoch for CoKe with
multi-view is 800. For Coke with two views, we set α = 0.2
and the ablation study for α can be found in the supple-
mentary. The temperature for CoKe with two/multi-view is
reduced to 0.05. Other settings, including batch size, di-
mension of representations, etc. remain the same. Follow-
ing [6], the linear classifier is optimized with SGD while
the batch size and the number of epochs is 1, 024 and 90,
respectively. We conduct the ablation study for these addi-
tional components.

2.2. Ablation study

2.2.1 Small Batch Training

Since our objective for representation learning is a classi-
fication problem, it is insensitive to small batch size. To
validate the claim, we have the experiments with the batch
size of {256, 512, 1024} in Table 1. The learning rate for
the batch size 256 and 512 is set to 0.8 and 1.2, respec-
tively. We can observe from Table 1 that the performance

Batch Size 256 512 1,024
Acc% 64.2 64.7 64.5

Table 1. Comparison of different batch size.

of size 256 is similar to that of 1, 024. It confirms that the
proposed method is applicable with small batch size. Note
that the ablation study has 200 epochs for pre-training, and
additional training epochs can further mitigate the gap as
illustrated in SwAV [2].



2.2.2 Single View with Moving Average

Here, we investigate the effect of the proposed moving av-
erage strategy as a two-stage training scheme. To keep the
label vector sparse, we fix the number of non-zero terms in
a label vector to be 5 in the second stage, where the perfor-
mance is quite stable with other values in {10, 20, 30}. The
sparse label will be further smoothed by a Softmax operator
as

µ̃i,k =

{
exp(µ̃i,k/λ

′)/Z µ̃i,k > 0
0 µ̃i,k = 0

where Z =
∑

k I(µ̃i,k > 0) exp(µ̃i,k/λ
′) and λ′ = 0.5

in all experiments. We also update centers only after each
epoch in the second stage as discussed in Sec. 3.2.2.

T ′ 120 160 200
Acc% 64.3 65.8 65.3

Table 2. Moving average with different T ′.

T ′ is the number of epochs for the first stage and differ-
ent settings of T ′ is compared in Table 2. It can be observed
that a single stage training strategy achieves 65.3% accu-
racy, while smoothing the labels and centers in the last 40
epochs can further improve the performance to 65.8%. It
shows that the averaging strategy is effective for our frame-
work. However, the performance will degrade if we begin
moving average at an early stage as T ′ = 120, which is
due to that the model has not been trained sufficiently in the
first stage. Given T , we will set T ′ according to the ratio of
160/200 for CoKe of single view.

2.2.3 Optimization with Two Views

Now we evaluate the model with sophisticated settings.
When optimizing CoKe with two views, we keep the one-
stage training scheme but improve pseudo labels as follows

ŷt
i:1 = αỹt−1

i + (1− α)pt−1
i:2

where

pt−1
i:j,q =

exp(xj⊤
i ct−1

q /λ)∑K
k=1 exp(x

j⊤
i ct−1

k /λ)

The only parameter in the formulation is α that balances
the one-hot label from the last epoch and soft label from
the other view. The effect by varying α is summarized in
Table 3. It demonstrates that a sufficiently large α, which
contains the information from the last epoch, is essential
for improving the performance. We will fix α = 0.2 for rest
experiments.

2.2.4 Optimization with Prediction MLP

We illustrate the different architectures with additional pre-
diction head for existing methods [4,9] and CoKe in Fig. 1.

α 0.1 0.2 0.3 0.4
Acc% 73.9 74.9 74.5 74.4

Table 3. CoKe of two views with different α.

Most of existing methods constrain that the representation
after the prediction head is close to the representation of the
other view after the projection head. Unlike those methods,
CoKe tries to pull the representation of each instance to its
corresponding cluster center. Therefore, both of representa-
tions after the projection MLP and prediction MLP can be
leveraged for optimization as shown in Fig. 1 (b). Let ℓpred
and ℓproj denote the classification loss for the representa-
tions from prediction and projection MLP, respectively. The
final loss can be obtained as

ℓ = βℓpred + (1− β)ℓproj

The effect of β is summarized in Table 4 for CoKe with
single view and two views. Note that the clustering phase
including obtaining centers is applied to the representations
after projection MLP only.

β 0 0.5 1
single-view 72.3 72.5 72.5
two-view 74.4 74.9 73.3

Table 4. CoKe with different settings of prediction MLP.

From the comparison, it demonstrates that the additional
prediction MLP is helpful for learning better representa-
tions. Interestingly, if optimizing the loss defined on rep-
resentations from the prediction only, the performance of
CoKe with two views can be degenerated. It may be due to
that the dense soft label in two-view optimization is gener-
ated from the representation of the projection head. Without
the corresponding loss, it is hard to optimize the prediction
MLP solely.

2.2.5 Long Training

Finally, we compare the performance of 800-epoch train-
ing to that of 1000-epoch training in Table 5. Evidently, a
longer training still can improve the performance slightly.

#epochs 800 1,000
Acc% 74.5 74.9

Table 5. CoKe of two views with different training epochs.

2.3. Comparison on Downstream Tasks

After evaluating the performance on ImageNet, we ap-
ply the pre-trained models on downstream tasks for object
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Figure 1. Illustration of architecture with the additional prediction head. The yellow bounding box denotes the results from the last epoch.

detection, instance segmentation and classification. Four
benchmark data sets are included for comparison. Con-
cretely, we fine-tune Faster R-CNN [17] with R50-C4 as
the backbone on PASCAL VOC [7] and Mask R-CNN [11]
with R50-FPN as the backbone and “1×” training paradigm
on COCO [16]. The codebase of MoCo 1 with Detec-
tron2 [18] is adopted. The standard fine-tuning procedure
is applied for classification on CIFAR-10 [15] and CIFAR-
100 [15].

For object detection and instance segmentation, we fol-
low the settings in MoCo [10] for a fair comparison while
only the learning rate is tuned. To obtain the optimal per-
formance for each model, we search the learning rate in
[0.02, 0.12] and [0.01, 0.05] with a step size of 0.01 for all
methods on VOC and COCO, respectively. For classifica-
tion, we search the learning rate in {1, 10−1, 10−2, 10−3}
and weight decay in {10−5, 10−6, 0}, respectively. Be-
sides, the learning rate for the last fully-connected layer
is 10 times larger than others since it is randomly initial-
ized without pre-training. The best performance for base-
line methods is reported. CoKe with two-view optimization
is evaluated in this subsection.

VOC COCO C10 C100
Methods Ap50 Apbb Apmk Acc% Acc%
Supervised 81.3 38.9 35.4 97.3 86.6
MoCo-v2 83.0 39.6 35.9 97.9 86.1
Barlow Twins 81.5 40.1 36.9 98.0 87.4
BYOL 82.9 40.5 36.9 98.1 87.9
SwAV∗ 82.1 40.4 37.1 97.7 87.5
DINO∗ 82.0 40.2 36.8 97.7 87.6
CoKe 83.2 40.9 37.2 98.2 88.2

Table 6. Comparison on downstream tasks. ∗ denotes the usage of
the multi-crop training trick. Top-2 best models are underlined.

Table 6 summarizes the standard metric on VOC, COCO
and CIFAR. Explicitly, CoKe can outperform the super-
vised pre-trained model. It implies that an effective pre-
trained model can be learned without supervision. Detailed

1https://github.com/facebookresearch/moco/tree/main/detection

reports on COCO can be found in Tables 7 and 8.

Methods Apbb Apbb50 Apbb75
Supervised 38.9 59.6 42.7
MoCo-v2 39.6 60.5 43.4
Barlow Twins 40.1 61.6 43.9
BYOL 40.5 61.8 44.2
SwAV∗ 40.4 61.8 44.0
DINO∗ 40.2 61.7 43.8
CoKe 40.9 62.3 44.7

Table 7. Comparison of object detection on COCO.

Methods Apmk Apmk
50 Apmk

75

Supervised 35.4 56.5 38.1
MoCo-v2 35.9 57.4 38.4
Barlow Twins 36.9 58.5 39.6
BYOL 36.9 58.6 39.5
SwAV∗ 37.1 58.7 39.8
DINO∗ 36.8 58.3 39.5
CoKe 37.2 59.1 39.9

Table 8. Comparison of instance segmentation on COCO.

2.4. Comparison on Clustering

As a deep clustering method, we compare CoKe to the
benchmark clustering algorithms on CIFAR-10 and CIFAR-
100 [15] in Tables 9 and 10, respectively. We follow the
evaluation protocol in SCAN that trains models on training
set and then evaluates the performance on test set with the
prediction from the model directly. For CIFAR-100, 20 su-
perclass labels are used for comparison.

CoKe with two-view optimization is adopted for com-
parison. Compared with ImageNet, the resolution of im-
ages in CIFAR is only 32 × 32. Therefore, we change the
parameter of random crop from [0.08, 1] to [0.3, 1] to keep
the semantic information of the image. The model is opti-
mized with SGD for 400 epochs. The batch size is 128 and
the learning rate is 0.2. Since CIFAR is a balanced data set,



the lower-bound constraint is set to 0.9 and the learning rate
for the dual variables is 0.1. Other settings remain the same
and we have the same parameters for different data sets. To
compare with SCAN, we have the same ResNet-18 as the
backbone in CoKe. SCAN has 10 clustering heads with the
same number of clusters for multi-clustering. To have ex-
plicit multi-clustering, CoKe has 10 clustering heads with
different number of clusters. Concretely, we have [10, 100]
with a step of 10 for CIFAR-10 and [20, 200] with a step size
of 20 for CIFAR-100-20. The head with the target number
of clusters is adopted for evaluation. The result averaged
over 10 trails is reported.

Methods CIFAR-10
ACC NMI ARI

Supervised 93.8 86.2 87.0
DeepCluster [1] 37.4 N/A N/A
IIC [14] 61.7 51.1 41.1
Pretext [3]+k-means 65.9±5.7 59.8±2.0 50.9±3.7
SCAN [8] 81.8±0.3 71.2±0.4 66.5±0.4
CoKe 85.7±0.2 76.6±0.3 73.2±0.4

Table 9. Comparison of clustering on CIFAR-10. SCAN is a two-
stage method including pre-training and fine-tuning for clustering.

Methods CIFAR-100-20
ACC NMI ARI

Supervised 80.0 68.0 63.2
DeepCluster [1] 18.9 N/A N/A
IIC [14] 25.7 22.5 11.7
Pretext [3]+k-means 39.5±1.9 40.2±1.1 23.9±1.1
SCAN [8] 42.2±3.0 44.1±1.0 26.7±1.3
CoKe 49.7±0.7 49.1±0.4 33.5±0.4

Table 10. Comparison of clustering on CIFAR-100-20.

Tables 9 and 10 show that CoKe as an end-to-end cluster-
ing framework can achieve the superior performance with-
out any fine-tuning. On the contrary, SCAN has a two-stage
training strategy that learns representations in the first stage
with instance discrimination and fine-tunes the model for
clustering with different objectives and augmentations in
the second stage. Therefore, the representation from the
first stage may degenerate the performance of clustering.
Finally, Fig. 2 shows the exemplars that are close to cluster
centers from CoKe on CIFAR. We can find that CoKe can
recover the exact classes on CIFAR-10, which confirms the
effectiveness of CoKe for clustering.
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