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A. Network Architecture Details
A.1. Geometric Structure Embedding

First, we provide the detailed computation for our geo-
metric structure embedding. The geometric structure em-
bedding encodes distances in superpoint pairs and angles
in superpoint triplets. Due to the continuity of the sinusoi-
dal embedding function [16], we use it instead of learned
embedding vectors to compute the pair-wise distance em-
bedding and the triplet-wise angular embedding.

Given the distance ρi,j =‖p̂i − p̂j‖2 between p̂i and p̂j ,
the pair-wise distance embedding rDi,j is computed as:

rDi,j,2k = sin(
di,j/σd

100002k/dt
)

rDi,j,2k+1 = cos(
di,j/σd

100002k/dt
)

, (1)

where dt is the feature dimension, and σd is a temperature
which controls the sensitivity to distance variations.

The triplet-wise angular embedding can be computed in
the same way. Given the angle αk

i,j , the triplet-wise angular
embedding rAi,j,k is computed as:

rAi,j,k,2x = sin(
αk
i,j/σa

100002x/dt
)

rAi,j,k,2x+1 = cos(
αk
i,j/σa

100002x/dt
)

, (2)

where σa is another temperature to control the sensitivity to
angular variantions.

A.2. Point Matching Module

For completeness, we then provide the details of the opti-
mal transport layer [13] in the point matching module. For
each superpoint correspondence (p̂xi

, q̂yi
), its local point

correspondences are extracted from their local patches GPxi

and GQyi
. We first compute a cost matrix Ci∈Rni×mi using

the feature matrices of the two patches:

Ci = FPxi
(FQyi

)T /
√
d̃, (3)

where ni = |GPxi
|, mi = |GQyi

|. The cost matrix Ci is then
augmented to C̄i ∈R(ni+1)×(mi+1) by appending a new

row and a new column filled with a learnable dustbin pa-
rameter α as in [13]. The point matching problem can then
be formulated as an optimal transport problem which maxi-
mizes

∑
j,k C̄i · Z̄i, where Z̄i ∈R(ni+1)×(mi+1) is the soft

assignment matrix satisfying:

mi+1∑
k=1

z̄ij,k =

{
1, 1 ≤ j ≤ ni
mi, j = ni + 1

, (4)

ni+1∑
j=1

z̄ij,k =

{
1, 1 ≤ k ≤ mi

ni, k = mi + 1
. (5)

Here Z̄i can be solved by the differentiable Sinkhorn algo-
rithm [14] with doubly-normalization iterations:

(t)uij = logαi
j − log

mi+1∑
k=1

exp(c̄ ij,k + (t−1)vik), (6)

(t)vik = log βi
k − log

ni+1∑
j=1

exp(c̄ ij,k + (t)uij), (7)

where

αi
j =

{
1

ni+mi
, 1 ≤ j ≤ ni

mi

ni+mi
, j = ni + 1

, (8)

βi
k =

{
1

ni+mi
, 1 ≤ k ≤ mi

ni

ni+mi
, k = mi + 1

. (9)

The algorithm starts with (0)u = 0ni+1 and (0)v = 0mi+1.
The assignment matrix Z̄i is then computed as:

z̄ i
j,k = exp(c̄ ij,k + uij + vik) · (ni+mi). (10)

We run t0 = 100 Sinkhorn iterations following [13]. Z̄i is
then recovered to Zi ∈Rni×mi by dropping the last row
and the last column, which is used as the confidence matrix
of the candidate matches. The local point correspondences
are extracted by mutual top-k selection on Zi. We ignore
the matches whose confidence scores are too small (i.e.,
zixj ,yj

<0.05). The hyper-parameter k controls the number
of point correspondences as described in Appx. A.3. At last,
the final global dense point correspondences are generated
by combining the local point correspondences from all su-
perpoint correspondences together.
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Stage 3DMatch KITTI

Backbone

1 KPConv(1→64) KPConv(1→64)
ResBlock(64→ 128) ResBlock(64→ 128)

2
ResBlock(64→ 128, strided) ResBlock(64→ 128, strided)

ResBlock(128→ 256) ResBlock(128→ 256)
ResBlock(256→ 256) ResBlock(256→ 256)

3
ResBlock(256→ 256, strided) ResBlock(256→ 256, strided)

ResBlock(256→ 512) ResBlock(256→ 512)
ResBlock(512→ 512) ResBlock(512→ 512)

4
ResBlock(512→ 512, strided) ResBlock(512→ 512, strided)

ResBlock(512→ 1024) ResBlock(512→ 1024)
ResBlock(1024→ 1024) ResBlock(1024→ 1024)

5 -
ResBlock(1024→ 1024, strided)

ResBlock(1024→ 2048)
ResBlock(2048→ 2048)

6 - NearestUpsampling
UnaryConv(3072→ 1024)

7 NearestUpsampling NearestUpsampling
UnaryConv(1536→ 512) UnaryConv(1536→ 512)

8 NearestUpsampling NearestUpsampling
UnaryConv(768→ 256) UnaryConv(768→ 256)

Superpoint Matching Module

1 Linear(1024→ 256) Linear(2048→ 128)

2 GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4)
FeatureCrossAttention(256, 4) FeatureCrossAttention(128, 4)

3 GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4)
FeatureCrossAttention(256, 4) FeatureCrossAttention(128, 4)

4 GeometricSelfAttention(256, 4) GeometricSelfAttention(128, 4)
FeatureCrossAttention(256, 4) FeatureCrossAttention(128, 4)

5 Linear(256→ 256) Linear(128→ 256)

Table 1. Network architecture for 3DMatch and KITTI.

A.3. Network Configurations

Backbone. We use a KPConv-FPN backbone for feature
extraction. The grid subsampling scheme [15] is used to
downsample the point clouds. Before being fed into the
backbone, the input point clouds are first downsampled with
a voxel size of 2.5cm on 3DMatch and 30cm on KITTI.
The voxel size is then doubled in each downsampling opera-
tion. We use a 4-stage backbone for 3DMatch and a 5-stage
backbone for KITTI because the point clouds in KITTI are
much larger than those in 3DMatch. The configurations of
KPConv are the same as in [7]. And we use group normal-
ization [17] with 8 groups after the KPConv layers. The
detailed network configurations are shown in Tab. 1.

Superpoint Matching Module. At the beginning of the
superpoint matching module, a linear projection is used to
compress the feature dimension. For 3DMatch, the feature
dimension is 256. For KITTI, we halve the feature dimen-
sion to 128 to reduce memory footprint. We then interleave
the geometric self-attention module and the feature-based
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Figure 1. Left: The structure of feature-based cross-attention mod-
ule. Right: The computation graph of cross-attention.

cross-attention module for Nt = 3 times:

(1)F̂Pself = GeometricSelfAtt(P̂, F̂PWin), (11)
(1)F̂Qself = GeometricSelfAtt(Q̂, F̂QWin), (12)
(t)F̂Pself = GeometricSelfAtt(P̂, (t−1)F̂Pcross), (13)
(t)F̂Qself = GeometricSelfAtt(Q̂, (t−1)F̂Qcross), (14)

(t)F̂Pcross = FeatureCrossAtt((t)F̂Pself,
(t)F̂Qself), (15)

(t)F̂Qcross = FeatureCrossAtt((t)F̂Qself,
(t)F̂Pcross). (16)

All attention modules have 4 attention heads. In the geo-
metric structure embedding, we use σd=0.2m on 3DMatch
and σd=4.8m on KITTI (i.e., the voxel size in the coarsest
resolution level), while σa=15◦ on both datasets. The com-
putation of the feature-based cross-attention for P̂ is shown
in Fig. 1. Afterwards, we use another linear projection to
project the features to 256-d, i.e., the final ĤP and ĤQ:

ĤP = (Nt)F̂PcrossWout, (17)

ĤQ = (Nt)F̂QcrossWout. (18)

Local-to-Global Registration. In the local-to-global reg-
istration, we only use the superpoint correspondences with
at least 3 local point correspondences to compute the trans-
formation candidates. To select the best transformation, the
acceptance radius is τa=10cm on 3DMatch and τa=60cm
on KITTI. At last, we iteratively recompute the transfor-
mation with the surviving inlier matches for Nr =5 times,
which is similar with the post-refinement process in [1].
However, we do not change the weights of the correspon-
dences during the refinement. The impact of the number of
iterations in the refinement is studied in Appx. D.3.

Implementation details. We implement and evaluate our
GeoTransformer with PyTorch [12] on a Xeon Glod 5218
CPU and an NVIDIA RTX 3090 GPU. The network is
trained with Adam optimizer [8] for 40 epochs on 3DMatch
and 80 epochs on KITTI. The batch size is 1 and the weight
decay is 10−6. The learning rate starts from 10−4 and de-
cays exponentially by 0.05 every epoch on 3DMatch and
every 4 epochs on KITTI. We use the matching radius of



τ=5cm for 3DMatch and τ=60cm for KITTI (i.e., the
voxel size in the resolution level of P̃ and Q̃) to deter-
mine overlapping during the generation of both superpoint-
level and point-level ground-truth matches. The same data
augmentation as in [7] is adopted. We randomly sample
Ng =128 ground-truth superpoint matches during training,
and use Nc=256 putative ones during testing.

Correspondences sampling strategy. For 3DMatch, we
vary the hyper-parameter k in the mutual top-k selection
of the point matching module to control the number of the
point correspondences for GeoTransformer, i.e., k=1 for
250/500/1000 matches, k=2 for 2500 matches, and k=3
for 5000 matches. And we use top-k selection to sample
a certain number of the correspondences instead of random
sampling as in [5, 7, 18], which makes our correspondences
deterministic. For the registration with LGR (Tab. 2(bot-
tom) of our main paper), we use k=3 to generate around
6000 correspondences for each point cloud pair. For the
baselines, we report the results from their original papers or
official models in Tab. 1 of our main paper.

For the registration with weighted SVD (Tab. 2(middle)
of our main paper), the correspondences of the baselines
are extracted in the following manner: we first sample 5000
keypoints and generate the correspondences with mutual
nearest neighbor selection in the feature space, and then the
top 250 correspondences with the smallest feature distances
are used to compute the transformation. The weights of the
correspondences are computed aswi = exp(−‖fPxi

−fQyi
‖22),

where fPxi
and fQyi

are the respective descriptors of the cor-
respondences. In the sampling strategies that we have tried,
this scheme achieves the best registration results.

For KITTI, we use k=2 and select the top 5000 point
correspondences following [2, 7]. All other hyperparame-
ters are the same as those in 3DMatch.

B. Metrics
Following common practice [2, 5, 7], we use different

metrics for 3DMatch and KITTI. On 3DMatch, we report
Inlier Ratio, Feature Matching Recall and Registration Re-
call. We also report Patch Inlier Ratio to evaluate the super-
point (patch) correspondences. On KITTI, we report Rela-
tive Rotation Error, Relative Translation Error and Regis-
tration Recall.

B.1. 3DMatch/3DLoMatch

Inlier Ratio (IR) is the fraction of inlier matches among
all putative point matches. A match is considered as an in-
lier if the distance between the two points is smaller than
τ1 = 10cm under the ground-truth transformation T̄P→Q:

IR =
1

|C|
∑

(pxi
,qyi

)∈C

J‖T̄P→Q(pxi
)− qyi

‖2 < τ1K, (19)

where J·K is the Iversion bracket.
Feature Matching Recall (FMR) is the fraction of point

cloud pairs whose IR is above τ2 = 0.05. FMR measures
the potential success during the registration:

FMR =
1

M

M∑
i=1

JIRi > τ2K, (20)

where M is the number of all point cloud pairs.
Registration Recall (RR) is the fraction of correctly reg-

istered point cloud pairs. Two point clouds are correctly
registered if their transformation error is smaller than 0.2m.
The transformation error is computed as the root mean
square error of the ground-truth correspondences C∗ after
applying the estimated transformation TP→Q:

RMSE =

√√√√ 1

|C∗|
∑

(p∗
xi

,q∗
yi

)∈C∗
‖TP→Q(p∗xi

)− q∗yi
‖22, (21)

RR =
1

M

M∑
i=1

JRMSEi < 0.2mK. (22)

Patch Inlier Ratio (PIR) is the fraction of superpoint
(patch) matches with actual overlap under the ground-truth
transformation. It reflects the quality of the putative super-
point (patch) correspondences:

PIR =
1

|Ĉ|

∑
(p̂xi

,q̂yi
)∈Ĉ

J∃p̃ ∈ GPxi
, q̃ ∈ GQyi

s.t. ‖p̃−q̃‖2 < τK,

(23)
where the matching radius is τ = 5cm as stated in A.3.

B.2. KITTI

Relative Rotation Error (RRE) is the geodesic distance
in degrees between estimated and ground-truth rotation ma-
trices. It measures the differences between the predicted
and the ground-truth rotation matrices.

RRE = arccos

(
trace(RT · R̄− 1)

2

)
. (24)

Relative Translation Error (RTE) is the Euclidean dis-
tance between estimated and ground-truth translation vec-
tors. It measures the differences between the predicted and
the ground-truth translation vectors.

RTE = ‖t− t̄‖2. (25)

Registration Recall (RR) on KITTI is defined as the frac-
tion of the point cloud pairs whose RRE and RTE are both
below certain thresholds (i.e., RRE<5◦ and RTE<2m).

RR =
1

M

M∑
i=1

JRREi < 5◦ ∧ RTEi < 2mK. (26)



Following [2, 5, 7, 10, 18], we compute the mean RRE and
the mean RTE only for the correctly registered point cloud
pairs in KITTI.

C. Analysis of Cross-Entropy Loss
In this section, we first give an analysis that adopting

the cross-entropy loss in multi-label classification problem
could suppress the classes with high confidence scores.
Given the input vector y ∈ Rn and the label vector g ∈
{0, 1}n, the confidence vector z is computed by adopting a
softmax on y:

zi =
exp(yi)∑n
j=1 exp(yj)

. (27)

The cross-entropy loss is computed as:

L = −
n∑

i=1

gi log(zi). (28)

And the gradient vector d of y is computed as:

di =
∂L
∂yi

= (

n∑
j=1

gj)zi − gi. (29)

The zero point of di w.r.t. zi is ci = gi/
∑n

j=1 gj . If there
are multiple positive classes, we have 0 < ci < 1 for each
positive class as

∑n
j=1 gj > 1. Hence yi will be increased

if zi < ci (di < 0), and be reduced if zi > ci (di > 0). This
indicates that the cross-entropy loss will suppress the posi-
tive classes with higher confidence scores during training.

Now we go back to context of superpoint matching. To
supervise the superpoint matching, CoFiNet [18] adopts a
cross-entropy loss with an optimal transport layer, which
formulates the superpoint matching as a multi-class classi-
fication problem for each superpoint. The ground-truth su-
perpoint correspondences are determined by whether their
neighboring point patches overlap. In practice, one patch
usually overlaps with multiple patches in the other point
cloud, so superpoint matching is a multi-class classifica-
tion problem. According to the analysis above, the pos-
itive matches with higher confidence scores will be sup-
pressed by the cross-entropy loss, which hinders the model
from extracting reliable superpoint correspondences. CoFi-
Net [18] further designs a reweighting method which gives
better zero points for the gradients, but the problem cannot
be solved completely. On the contrary, our overlap-aware
circle loss supervises the superpoint matching in a metric
learning manner, which avoids this issue.

D. Additional Experiments
In this section, we conduct more experiments to evalu-

ate our method. In Appx. D.1, we provide more detailed
comparison on 3DMatch and 3DLoMatch. In Appx. D.2,

Overlap Vanilla Self-attention Geometric Self-attention
PIR(%) IR(%) RR(%) PIR(%) IR(%) RR(%)

90%−100% 0.974 0.829 1.000 0.989 0.894 1.000
80%−90% 0.948 0.787 1.000 0.969 0.859 1.000
70%−80% 0.902 0.731 0.931 0.935 0.815 0.931
60%−70% 0.884 0.686 0.933 0.939 0.783 0.946
50%−60% 0.843 0.644 0.957 0.913 0.750 0.970
40%−50% 0.787 0.579 0.935 0.867 0.689 0.944
30%−40% 0.716 0.523 0.917 0.818 0.644 0.940
20%−30% 0.560 0.406 0.781 0.666 0.518 0.839
10%−20% 0.377 0.274 0.639 0.466 0.372 0.705

Table 2. Comparison of the models with the vanilla self-attention
and the geometric self-attention under different overlap ratios. The
results are reported on the union of 3DMatch and 3DLoMatch.

we compare our method with recent deep robust estimators.
In Appx. D.3, we conduct more ablation studies to better
understand our design choices.

D.1. Detailed Results on 3DMatch

Registration results with different overlaps. We first
compare the performance of the models with vanilla self-
attention and our geometric self-attention under different
overlap ratios on 3DMatch and 3DLoMatch. As shown in
Tab. 2, our method consistently outperforms the vanilla self-
attention counterpart on all the metrics in all levels of over-
lap ratio. The gains are greater when the overlap ratio is
below 30%, demonstrating our method is more robust in
low-overlap scenarios.

Scene-wise registration results. We present the scene-
wise registration results on 3DMatch and 3DLoMatch in
Tab. 4. Following [2, 5, 7], we report mean median RRE
and RTE for the successfully registered point cloud pairs.
For the registration recall, our method outperforms the base-
lines in most scenes on 3DMatch, especially the hard scenes
such as Home 2 and Lab. And it surpasses the baselines by
a large margin in all scenes on 3DLoMatch. Moreover, our
GeoTransformer also achieves consistently superior results
on the rotation and translation errors.

D.2. Comparison with Deep Robust Estimators

We further compare with recent deep robust estimators:
3DRegNet [11], DGR [4], PointDSC [1], DHVR [9] and
PCAM [3] on 3DMatch and KITTI. Following common
practice, we report RTE, RRE and RR on both benchmarks.
Here RR is defined as in Appx. B.2. The RTE threshold
is 30cm on 3DMatch and 60cm on KITTI, while the RRE
threshold is 15◦ on 3DMatch and 5◦ on KITTI. As shown
in Tab. 3, our method outperforms all the baselines on both
benchmarks. Although different correspondence extractors
are used, these results can already demonstrate the superi-
ority of GeoTransformer. It is noteworthy that our LGR is
parameter-free and does not require training a specific net-
work, which contributes to faster registration speed (0.013s



Model RTE(cm) RRE(◦) RR(%)

3DMatch

FCGF+3DRegNet [11] 8.13 2.74 77.8
FCGF+DGR [4] 7.36 2.33 86.5
FCGF+PointDSC [1] 6.55 2.06 93.3
FCGF+DHVR [9] 6.61 2.08 91.4
PCAM [3] ∼7 2.16 92.4
GeoTransformer (ours, LGR) 5.69 1.98 95.0

3DLoMatch

FCGF+PointDSC [1] 10.50 3.82 56.2
FCGF+DHVR [9] 11.76 3.88 55.6
GeoTransformer (ours, LGR) 8.55 2.98 77.5

KITTI

FCGF+DGR [4] 21.7 0.34 96.9
FCGF+PointDSC [1] 20.9 0.33 98.2
FCGF+DHVR [9] 19.8 0.29 99.1
PCAM [3] ∼8 0.33 97.2
GeoTransformer (ours, LGR) 6.5 0.24 99.5

Table 3. Comparison with deep robust estimators on 3DMatch and
KITTI. The RTE of PCAM is rounded to centimeter in the original
paper [3].

vs. 0.08s [1] in our experiments).

D.3. Additional Ablation Studies

Transformation invariance. We first evaluate the trans-
formation invariance of different positional embeddings in
Tab. 5. For each model, we randomly apply arbitrary ro-
tations to the superpoints when computing the superpoint
embeddings. Among all the variants, enlarged rotations
severely degrade the performance of (a) self-attention with
absolute coordinate embedding, which indicates the lack of
transformation variance in it. Surprisingly, the performance
of (b) self-attention with relative coordinate embedding is
quite stable. However, after masking the relative coorinate
embedding out, we find that the results of this model still
remain the same, which means the relative coordinate em-
bedding contributes little to the final performance during
testing. In constrast, our (c) geometric self-attention shows
strong invariance to rigid transformation.

Geometric structure embedding. Next, we study the de-
sign of geometric structure embedding. We first vary the
number of nearest neighbors for computing the triplet-wise
angular embedding. As shown in Tab. 6(top), increasing
the neighbors slightly improves the registration recall, but
also requires more computation. To better balance accu-
racy and speed, we select k=3 in our experiments unless
otherwise noted. We then replace max pooling with aver-
age pooling when aggregating the triplet-wise angular em-
bedding in Eq. (5) of our main paper. From Tab. 6(middle),
the results of two pooling methods are very close and max
pooling performs slightly better than average pooling.

Dual-normalization. We then investigate the effective-
ness of the dual-normalization operation in the superpoint
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Figure 2. Ablation experiments on the pose refinement.

matching module. As shown in Tab. 6(bottom), it slightly
improves the accuracy of the superpoint correspondences
in low-overlap scenarios. As there is less overlapping con-
text when the overlapping area is small, it is much easier to
extract outlier matches between the less geometrically dis-
criminative patches. The dual-normalization operation can
mitigate this issue and slightly improves the performance.

Pose refinement. At last, we evaluate the impact of the
pose refinement in LGR. As shown in Fig. 2, the registration
recall consistently improves with more iterations and gets
saturated after about 5 iterations. To better balance accuracy
and speed, we choose 5 iterations in the experiments.

E. Limitations
GeoTransformer relies on uniformly downsampled su-

perpoints to hierarchically extract correspondences. How-
ever, there could be numerous superpoints if the input point
clouds cover a large area, which will cause huge memory
usage and computational cost. In this case, we might need
to carefully select the downsampling rate to balance perfor-
mance and efficiency.

Besides, it is inflexible to uniformly sample superpoints
(patches). In practice, it is common that a single object is
decomposed into multiple patches, which could be easily
registered as a whole. So we think that it is a very promis-
ing topic to integrate point cloud registration with semantic
scene understanding tasks (e.g., semantic segmentation and
object detection), which converts scene registration into ob-
ject registration. We will leave this for future work.

F. Qualitative Results
We provide more qualitative results on 3DLoMatch in

Fig. 3. The registration results from Predator [7] and CoFi-
Net [18] are also shown for comparison. Here Predator and
CoFiNet use RANSAC-50k for registration, while LGR is
used in GeoTransformer. Our method performs quite well
in these low-overlap cases. It is noteworthy that our method
can distinguish similar objects at different positions (see the
comparison of CoFiNet and GeoTransformer in the 4th and



Model 3DMatch 3DLoMatch
Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study Lab Mean Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study Lab Mean

Registration Recall (%) ↑

3DSN [6] 90.6 90.6 65.4 89.6 82.1 80.8 68.4 60.0 78.4 51.4 25.9 44.1 41.1 30.7 36.6 14.0 20.3 33.0
FCGF [5] 98.0 94.3 68.6 96.7 91.0 84.6 76.1 71.1 85.1 60.8 42.2 53.6 53.1 38.0 26.8 16.1 30.4 40.1
D3Feat [2] 96.0 86.8 67.3 90.7 88.5 80.8 78.2 64.4 81.6 49.7 37.2 47.3 47.8 36.5 31.7 15.7 31.9 37.2
Predator [7] 97.6 97.2 74.8 98.9 96.2 88.5 85.9 73.3 89.0 71.5 58.2 60.8 77.5 64.2 61.0 45.8 39.1 59.8
CoFiNet [18] 96.4 99.1 73.6 95.6 91.0 84.6 89.7 84.4 89.3 76.7 66.7 64.0 81.3 65.0 63.4 53.4 69.6 67.5
P2PNet (ours) 98.9 97.2 81.1 98.9 89.7 88.5 88.9 88.9 91.5 85.9 73.5 72.5 89.5 73.2 66.7 55.3 75.7 74.0

Relative Rotation Error (◦) ↓

3DSN [6] 1.926 1.843 2.324 2.041 1.952 2.908 2.296 2.301 2.199 3.020 3.898 3.427 3.196 3.217 3.328 4.325 3.814 3.528
FCGF [5] 1.767 1.849 2.210 1.867 1.667 2.417 2.024 1.792 1.949 2.904 3.229 3.277 2.768 2.801 2.822 3.372 4.006 3.147
D3Feat [2] 2.016 2.029 2.425 1.990 1.967 2.400 2.346 2.115 2.161 3.226 3.492 3.373 3.330 3.165 2.972 3.708 3.619 3.361
Predator [7] 1.861 1.806 2.473 2.045 1.600 2.458 2.067 1.926 2.029 3.079 2.637 3.220 2.694 2.907 3.390 3.046 3.412 3.048
CoFiNet [18] 1.910 1.835 2.316 1.767 1.753 1.639 2.527 2.345 2.011 3.213 3.119 3.711 2.842 2.897 3.194 4.126 3.138 3.280
P2PNet (ours) 1.797 1.353 1.797 1.528 1.328 1.571 1.952 1.678 1.625 2.356 2.305 2.541 2.455 2.490 2.504 3.010 2.716 2.547

Relative Translation Error (m) ↓

3DSN [6] 0.059 0.070 0.079 0.065 0.074 0.062 0.093 0.065 0.071 0.082 0.098 0.096 0.101 0.080 0.089 0.158 0.120 0.103
FCGF [5] 0.053 0.056 0.071 0.062 0.061 0.055 0.082 0.090 0.066 0.084 0.097 0.076 0.101 0.084 0.077 0.144 0.140 0.100
D3Feat [2] 0.055 0.065 0.080 0.064 0.078 0.049 0.083 0.064 0.067 0.088 0.101 0.086 0.099 0.092 0.075 0.146 0.135 0.103
Predator [7] 0.048 0.055 0.070 0.073 0.060 0.065 0.080 0.063 0.064 0.081 0.080 0.084 0.099 0.096 0.077 0.101 0.130 0.093
CoFiNet [18] 0.047 0.059 0.063 0.063 0.058 0.044 0.087 0.075 0.062 0.080 0.078 0.078 0.099 0.086 0.077 0.131 0.123 0.094
P2PNet (ours) 0.042 0.046 0.059 0.055 0.046 0.050 0.073 0.053 0.053 0.062 0.070 0.071 0.080 0.075 0.049 0.107 0.083 0.074

Table 4. Scene-wise registration results on 3DMatch and 3DLoMatch.

Model 3DMatch 3DLoMatch
original rotated original rotated

(a) self-attention w/ ACE 89.3 87.2 -2.1 69.3 67.4 -1.9

(b) self-attention w/ RCE 88.5 88.5 same 68.7 68.7 same

(c) geometric self-attention 91.5 91.4 -0.1 74.0 73.8 -0.2

Table 5. Ablation experiments with rotated superpoints.

Model 3DMatch 3DLoMatch
PIR FMR IR RR PIR FMR IR RR

(a) distance only 84.9 98.0 69.1 90.7 50.6 85.8 40.3 72.1
(b) k = 1 angles 86.5 97.9 70.6 91.0 54.6 87.1 42.7 73.1
(c) k = 2 angles 86.1 97.9 70.4 91.3 55.0 88.2 43.5 73.5
(d) k = 3 angles 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0
(e) k = 4 angles 86.6 98.0 70.7 91.7 55.1 88.4 43.5 74.2

(f) max pooling 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0
(g) average pooling 86.3 98.0 70.2 91.3 54.6 87.3 42.8 74.0

(h) w/ dual-normalization 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0
(i) w/o dual-normalization 86.2 97.7 70.3 91.0 53.5 87.9 42.8 73.8

Table 6. Additional ablation experiments.

6th rows) thanks to the transformation invariance obtained
from the geometric self-attention. Fig. 4 visualizes the reg-
istration results of GeoTransformer in the bird’s-eye view
on KITTI. It can be observed that our method attains very
accurate registration even without using RANSAC.

We also provide some failure cases of our method on
3DLoMatch in Fig. 5. Generally, if the overlaping region
between two point clouds is small and geometrically in-
discriminative (e.g., wall, ceiling and floor) or the non-
overlapping region is relatively complicated, the registra-
tion could fail. A commonality of these cases is that they
cannot provide adequate geometric cues to detect overlap-

ping area and extract reliable correspondences. A possible
solution could combine the information from multiple point
clouds. We will leave this for future work.
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(a) Input (b) Ground truth (c) Predator (d) CoFiNet (e) GeoTransformer

Figure 3. Registration results on 3DMatch and 3DLoMatch.



(a) Input (b) Ground truth (c) Ours (a) Input (b) Ground truth (c) Ours

Figure 4. Registration results on KITTI odometry.



(a) Input (b) Ground truth (c) Ours (a) Input (b) Ground truth (c) Ours

Figure 5. Failed cases on 3DLoMatch.
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