
Supplementary Materials for HiCo

Zhiwu Qing1 Shiwei Zhang2∗ Ziyuan Huang3 Yi Xu4 Xiang Wang1

Mingqian Tang2 Changxin Gao1∗ Rong Jin2 Nong Sang1

1Key Laboratory of Image Processing and Intelligent Control
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
2Alibaba Group 3ARC, National University of Singapore 4Dalian Unversity of Technology

{qzw, wxiang, cgao, nsang}@hust.edu.cn
{zhangjin.zsw, mingqian.tmq, jinrong.jr}@alibaba-inc.com

ziyuan.huang@u.nus.edu yxu@dlut.edu.cn

Overview
In this supplementary material, we first provide detailed theoretical proof for our proposed Gradual Sampling in Section 1.

Then the implementation details for pre-training, action recognition, video retrieval, and temporal action localization are
introduced in Section 2. Finally, we also show more experimental results and visualizations in Section 3.

1. Theoretical Analysis of the Gradual Sampling Strategy
In this section, we provide a theoretical understanding of the proposed Gradual Sampling (GS) strategy from the view

of generalization analysis, which is commonly used in the literature of learning theory [13]. For the sake of simplicity of
analysis, we abstract the key points from the GS strategy and make the strategy more math-friendly. As mentioned in the
main content of this paper, we divide the training data into two groups, one with small variance (denoted by D̂s) and another
one with large variance (denoted by D̂l). At the beginning of training, the sampled clips are considered as examples with
small variance since its sampling window size is small according to the definition of ∆̂max(α). This is reasonable because
when the window size is small, the sampled clips are usually similar. While during the later training epochs, the sampled
clips could be examples either with large or with small variance since the sampling window size is large and thus it could
sample very different clips. From the viewpoint of optimization, we characterize the difficulty of examples by their variance
in gradients. For instance, given two types of examples that are sampled from two different distributions Ds and Dl, it is easy
to learn a prediction function from Ds than from Dl, if

Eξ∼Ds

[
∥∇ℓ(w; ξ)−∇Fs(w)∥2

]
≤ Eζ∼Dl

[
∥∇ℓ(w; ζ)−∇Fl(w)∥2

]
, (A1)

where ξ and ζ are the data examples, w is the model parameter, ℓ the loss function and

∇Fs(w) = Eξ∼Ds [∇ℓ(w; ξ)] , ∇Fl(w) = Eζ∼Dl
[∇ℓ(w; ζ)] . (A2)

In the remaining of this section, we first give the preliminary, then we present the main result in a theorem. All the proofs are
included at the end of this section.

1.1. Preliminary

To make it easy for our analysis, we formulate the target task as a optimization problem as follows, where the target
distribution is a mixture of distributions Ds and Dl, with a mixture probability p ∈ [0, 1]. Formally, the optimization is
defined as

min
w∈Rd

L(w) := (1− p)Fs(w) + pFl(w), (A3)

1

where w is the model parameter to be learned, and the loss functions for simple examples and difficult examples are respec-
tively given by

Fs(w) = Eξ∼Ds [ℓ(w; ξ)] , Fl(w) = Eζ∼Dl
[ℓ(w; ζ)] . (A4)

Here the data examples ξ and ζ are the data examples that follow distributions Ds and Dl respectively, ℓ is a general loss
function that can be a single loss or a combined loss of several loss functions. The problem (A3) is known as risk minimization
(RM). Since the distributions Ds and Dl are usually unknown, it is difficult to obtain the loss function L(w) explicitly. In
stead of RM, one can consider its empirical version, which is known an empirical risk minimization (ERM):

min
w∈Rd

L̂(w) := (1− p)F̂s(w) + pF̂l(w), (A5)

where

F̂s(w) =
1

n

∑
ξi∈D̂s

ℓ(w; ξi), F̂l(w) =
1

m

∑
ζj∈D̂l

ℓ(w; ζj). (A6)

The set of training data D̂s := {ξi, i = 1, . . . , n} is sampled from the distribution Ds, and the set of training data D̂l :=
{ζj , i = 1, . . . ,m} is sampled from the distribution Dl. To solve the ERM (A5), one of simple yet efficient methods is SGD,
whose key updating step is given by

wt+1 = wt − η∇wg(wt; ξit , ζit), t = 0, 1, . . . , (A7)

where η > 0 is the learning rate, and ∇wg(w; ξ, ζ) the stochastic gradient of L(w) such that Eξ,ζ [∇g(w; ξ, ζ)] = ∇L(w).
For simplicity, we use g(w) := g(w; ξ, ζ) in the following analysis. When the variable to be taken a gradient is obvious, we
use ∇g(w) instead of ∇wg(w). Similarly, when the randomness is obvious, we use E[·] instead of Eξ[·], Eζ [·] or Eξ,ζ [·]. In
this analysis, we are interested in the excess risk bound (ERB), which is a standard measurement of evaluating the solution
ŵ obtained by an algorithm:

L(ŵ)− L(w∗), (A8)

where w∗ ∈ argminw∈Rd L(w) is the optimal solution of problem (A3).
For the convenience of analysis, we make the following widely used assumptions for the loss function.

Assumption 1 (Polyak-Łojasiewicz condition [10]). There exists a constant µ > 0 such that

2µ(L(w)− L(w∗)) ≤ ∥∇L(w)∥2, ∀w ∈ Rd,

where w∗ ∈ argminw∈Rd L(w) is a optimal solution.

Assumption 2 (Smoothness [9]). L(w) is smooth with an L-Lipchitz continuous gradient, i.e., it is differentiable and there
exists a constant L > 0 such that

∥∇L(w)−∇L(w′)∥ ≤ L∥w − w′∥,∀w,w′ ∈ Rd.

Assumption 2 says the objective function L(w) is smooth with module parameter L > 0. This assumption has an
equivalent expression [9]: L(w)− L(w′) ≤ ⟨L(w′), w − w′⟩+ L

2 ∥w − w′∥2, ∀w,w′ ∈ Rd.
We assume that the difference between Fs and Fl is captured by ∆̂ from the following assumption.

Assumption 3. There exists ∆̂ ≥ 0 such that

max
w∈Rd

∥∇Fs(w)−∇Fl(w)∥ ≤ ∆̂.

Following the above definition of difficult examples, we assume the following variance structure for stochastic gradients
for distribution Ds and Dl.

Assumption 4 (Bounded variance [4]). The stochastic gradient of Fs(w) is unbiased and variance bounded. That is,
Eξ∼Ds [∇ℓ(w; ξ)] = ∇Fs(w) and there exists a constant σ2 > 0, such that

Eξ∼Ds

[
∥∇ℓ(w; ξ)−∇Fs(w)∥2

]
≤σ2.

Assumption 5 (Weak Growth Condition [1,2]). The stochastic gradient of L(w) is unbiased and variance bounded. That is,
Eξ∼DsEζ∼Dl

[∇g(w)] = ∇L(w) and there exists a constant σ2 > 0, such that

Eξ∼Dl
Eζ∼Dl

[
∥∇g(w)−∇L(w)∥2

]
≤h

2
∥∇L(w)∥2 + σ2,

where h ≫ 1 is a large constant.

Assumptions 4 and 5 imply that Eζ∼Dl
[∇ℓ(w; ζ)] = ∇Fl(w) and

Eξ∼Dl

[
∥∇ℓ(w; ζ)−∇Fl(w)∥2

]
≤D + σ2, (A9)

where D := h
2p2 ∥∇L(w)∥2 + (1−p)2

p2

(
σ2 − Eξ∼Ds

[
∥∇ℓ(w; ξ)−∇Fs(w)∥2

])
> 0. Please note that h is a very large

constant, thus we can consider that the variance for difficult examples is much larger than the variance for simple examples.
As indicated by the variance structures, stochastic gradients from Dl exhibit significantly larger variance than those from

Ds, particularly at the beginning of the optimization. Hence, it may not be a good idea to run the standard SGD to optimize
L(w). Instead, we could divide the training process into two phases. In the first phase, we will optimize L(w) using the SGD
using the easy examples sampled from distribution Ds. In this way, we could avoid the potentially variance arising from Dl,
of course, at the price of bias. In the second phase, when we already received a good solution, we will run the standard SGD
to optimize L(w). Since the solution received from phase I already has excess risk, we will not suffer from the large variance
arising from distribution Dl.

1.2. Theoretical Analysis

Before the mathematically analysis, we give the following formal version of Theorem 1, showing that the proposed GS
strategy has better generalization than the random sampling (RS) strategy under some mild assumptions.

Theorem 1 (Formal Version of Theorem 1). Under Assumptions 1, 2, 3, 4, 5, we have the following two ERB for RS and GS,
respectively.
(1) for the output of RS ŵrs, by setting the learning rate η ≤ 1/[L(1 + hp)], the we have

E [L(ŵrs)− L(w∗)] ≤ exp(−ηµ(n+m))(L(w0)− L(w∗)) +
ηLσ2

2µ
≤ O (L(w0)− L(w∗)) .

(2) for the output of GS ŵgs, by setting the learning rates η1 = 1/L in the first phase and η ≤ 1/[L(1 + hp)] in the second
phase, the we have

E [L(ŵgs)− L(w∗)] ≤ O

(
σ2L log(n)

µ2n
+

p2∆̂2

µ

)
.

1.2.1 Proof of Theorem 1 (1)

As the first step, we analyze the RS for optimizing L(w), where uses both the examples from Ds and Dl.

Proof. For the sake of simplicity, let denote by ∇g(w) the stochastic gradient of L(w) such that E[∇g(w)] = ∇L(w). Then
the update of SGD for wt+1 = wt − η∇g(wt) for t = 0, 1, 2, By the smoothness of function L from Assumption 2, we

have

E[L(wt+1)− L(wt)]

≤E[⟨wt+1 − wt,∇L(wt)⟩] +
L

2
E[∥wt+1 − wt∥2]

=− ηE[⟨∇g(wt),∇L(wt)⟩] +
η2L

2
E[∥∇g(wt)∥2]

=− η

(
1− ηL

2

)
∥∇L(wt)∥2 +

η2L

2
E[∥∇g(wt)−∇L(wt)∥2]

≤− η

(
1− ηL

2

)
∥∇L(wt)∥2 +

η2L

2
E

[
h

2
∥∇L(wt)∥2 + σ2

]
, (A10)

where the last inequality uses Assumptions 4 and 5. Due to Assumption 1,

E[L(wt+1)− L(wt)] ≤ −η

(
1− ηL(1 + h)

2

)
∥∇L(wt)∥2 +

η2Lσ2

2
. (A11)

By selecting η ≤ η∗ := 1/[L(1 + h)], we have

E [L(wt+1)− L(w∗)] ≤ (1− ηµ) E [L(wt)− L(w∗)] +
η2Lσ2

2
. (A12)

and therefore

E [L(wn+m+1)− L(w∗)] ≤ exp(−ηµ(n+m))(L(w0)− L(w∗)) +
ηLσ2

2µ
. (A13)

Remark Since h is large enough, implying that η∗ := 1/[L(1 + hp)] is small enough, such that

exp(−η∗µ(n+m)) ≥ Lσ2

2µ2(n+m)(L(w0)− L(w∗))
,

we have

E [L(wn+m+1)− L(w∗)] ≤ exp(−η∗µ(n+m))(L(w0)− L(w∗)) +
η∗Lσ

2

2µ
.

Consider the special case when n+m = (hp+ 1)κ where κ := L/µ (now η∗ = 1
(n+m)µ), and

e−1 ≥ σ2

2µh (L(w0)− L(w∗))

we have

E [L(wn+m+1)− L(w∗)] ≤
L(w0)− L(w∗)

e
+

σ2

2µ(h+ 1)
.

We can see that, due to the large variance arising from Dl, we did not receive a significant reduction in the objective even
after n+m iterations when applying RS strategy.

1.2.2 Proof of Theorem 1 (2)

Proof. In the first phase, we run the optimization using the examples sampled from the distribution Ds. For the sake of
simplicity, let the training examples ξit , it = 1, . . . , n′ are sampled from distribution Ds. Then the update of SGD for

wt+1 = wt − η1∇ℓ(wt; ξit) for it = 0, 1, 2, By the smoothness of function L from Assumption 2, we have

E[L(wt+1)− L(wt)]

≤E[⟨wt+1 − wt,∇L(wt)⟩] +
L

2
E[∥wt+1 − wt∥2]

=− η1E[⟨∇ℓ(wt; ξit),∇L(wt)⟩] +
η21L

2
E[∥∇ℓ(wt; ξit)∥2]

=
η1
2
∥∇Fs(wt)−∇L(wt)∥2 −

η1
2
∥∇L(wt)∥2 −

η1(1− η1L)

2
E[∥∇Fs(wt)∥2]

+
η21L

2
E[∥∇ℓ(wt; ξit)−∇Fs(wt)∥2]. (A14)

where the last inequality uses E[∇g(wt; ξt)] = ∇g(wt). Due to Assumptions 3, 4, problem definition A3 and η1 ≤ 1/L, we
have

E[L(wt+1)− L(wt)] ≤
η1p

2∆̂2

2
+

η21σ
2L

2
− η1

2
∥∇L(wt)∥2 (A15)

Since L(·) is a µ-PL function under Assumption 1, we have

E[L(wt+1)− L(wt)] ≤ −η1µE[(L(wt)− L(w∗))] +
η1p

2∆̂2

2
+

η21σ
2L

2
(A16)

and thus

E[L(wn′+1)− L(w∗)] ≤ exp (−η1µn
′) (L(w0)− L(w∗)) +

p2∆̂2

2µ
+

η1σ
2L

2µ
. (A17)

In the second phase, we analyze the standard SGD for optimizing L(w) by using the solution of the first phase as the
initial solution of SGD. The proof is similar to proof of Theorem 1 (2). By using the result of (A17), we have

E [L(wn+m+1)− L(w∗)] ≤ exp(−ηµn′′)

(
exp (−η1µn

′) (L(w0)− L(w∗)) +
p2∆̂2

2µ
+

η1σ
2L

2µ

)
+

ηLσ2

2µ
.

When ∆̂ = 0 (i.e. the gradients for simple examples and for difficult examples are same), since η = O(1/h) is very small,
then by letting η1 = 1

µn′ log
(

2µ2n′(L(w0)−L(w∗))
σ2L

)
≤ 1/L with n′ = n, we have

E [L(wn+m+1)− L(w∗)] ≤ O

(
σ2L log(n)

µ2n

)
.

When ∆̂ ̸= 0 (i.e. the gradients for simple examples and for difficult examples are not same), since η = O(1/h) is very
small, then by letting η1 = min

(
1/L, p2∆̂2/(2σ2L)

)
and n′ ≥ 1

η1µ
log
(

4µ(L(w0)−L(w∗))

p2∆̂2

)
, we have

E [L(wn+m+1)− L(w∗)] ≤ O

(
p2∆̂2

µ

)
.

2. Implementation Details
2.1. Pre-training

We pre-train all models based on the SimCLR [3] framework and set τ = 0.1. Three different architectures (S3D-G,
R(2+1)D-10, R3D-18) are employed as the encoder f . The visual projection head g and topical projection head h each have
two hidden layers with 128 output dimensions. In addition, the topical predictor ϕ also contains two hidden layers, while

37.8

50.7 79.3

65.2

A
cc
ur
ac
y(
%
)

A
cc
ur
ac
y(
%
)

�δmaxδmax(s)
(a) (b)

�δmaxδmax(s)

Figure A1. Different δmax, i.e., the maximum distance between
two sampled clips for visual consistency learning. The backbone
is S3D-G.

 30k 50k 100k 150k 30k 50k 100k 150k

A
cc

ur
ac

y(
%

)

(a) HMDB51 (b) UCF101

A
cc

ur
ac

y(
%

)

Number of videos Number of videos

Figure A2. Linear fine-tuning performance comparisons with dif-
ferent numbers of videos for pre-training based on HiCo. S3D-G
is employed as the backbone here.

the output dimension is 1 for topical consistency prediction. The hyperparameter of Focal Loss in LTP, i.e., γ, is set to
0.5. We adopt standard augmentations used in contrastive approaches for data transformations, e.g., random cropping, color
distortion, and horizontal flipping. We use LARS [15] optimizer and set the base learning rate to 0.3. The training learning
rate satisfies: LearningRate = 0.3 × BatchSize/256. In pre-training, the learning rate is first linearly increased to
LearningRate and then decayed with the cosine schedule without restarts. The batch size is respectively set to 1024, 512,
and 1024 for S3D-G, R(2+1)D-10, and R3D-18 networks. For saving the computational costs, each input clip contains 16
frames for S3D-G and R(2+1)D-10, and 8 frames for R3D-18. The spatial resolution is 112× 112. For ablation experiments,
we only train 120 and 50 epochs on HACS and UK400 datasets, respectively. Our final reported performances are pre-trained
for 600 and 500 epochs on these two datasets, respectively.

2.2. Action Recognition

We fine-tune the models pre-trained by HiCo on UCF101 and HMDB51. If not specified, the input size of the video clips
is set to 16×112×112, which is consistent with the pre-training stage. For optimizer, we utilize Adam [6] with batch sizes
1024, 256, 128 for S3D-G [14], R(2+1)D-10 [11], and R3D18 [5], respectively. The learning rate for these three backbones
is set to 0.002, 0.00025, and 0.0002 and decay with a cosine annealing schedule. We train 300 epochs on both datasets and
adopt the same training strategies for fully fine-tuning and linear fine-tuning. In inference, we obtain final predictions by
averaging scores from 10 uniformly sampled temporal clips.

2.3. Video Retrieval

For nearest-neighbor video retrieval, we first use the pre-trained models without fine-tuning to extract features for both the
training set and testing set. Each video will obtain 10 feature vectors by 10 uniformly sampled video clips. Then we average
these features for each video and perform L2 normalization on averaged features. Finally, for each testing video, we calculate
its cosine similarities with all training videos. The evaluation metric is Recall at k (R@k), i.e., a correct retrieval refers to
that the top k nearest neighbours contain the correct class.

2.4. Temporal Action Localization

Temporal Action Localization(TAL) aims to generate temporal proposals which contain the action instances. Two metrics
are used to evaluate the generated proposals: AR and AUC. The former is Average Recall rate with different tIoU thresholds,
and the AUC is calculated by the area under the AR vs. Average Number of proposals (AN) curve, and the AN is varied from
0 to 100. For each video, we directly adopt the pre-trained models to extract 100 temporally uniform features as the input of
BMN [7]. The optimizer for BMN is Adamw [8], with a learning rate of 0.001 and a weight decay of 1e-6. The learning rate
decays with a cosine annealing schedule. We train BMN for 10 epochs and set the training batch size to 128.

3. Additional Experimental Results
3.1. Different temporal distance for VCL

We propose a simple δmax to constrain the maximum distance between two sampled positive clips for visual consistency
learning. To qualify the impact of δmax, we evaluate different δmax based on standard contrastive learning framework, the
performance curves on action recognition task are shown in Figure A1 (a) and (b). We can observe that increasing δmax may

Trimmed K400+HiCoTrimmed K400+Contrastive Learning Untrimmed K400+Contrastive Learning Untrimmed K400+HiCo

Figure A3. tSNE projection of video features in ActivieyNet-v1.3 dataset. Each color represents an untrimmed video. We present different
datasets, i.e., trimmed and untrimmed datasets, with standard contrastive learning and HiCo for pre-training.

hurt both fully fine-tuning and linear fine-tuning accuracy. However, the peak of linear fine-tuning appears at δmax = 1s
on both datasets. One possible reason is that forcing two semantic unrelated long-range clips to share the same feature
embedding will confuse the network. Conversely, for two almost identical clips, the network can find shortcuts easily between
them and fails to learn powerful representations.

3.2. Dataset Scales

We randomly select trimmed videos from the K400 dataset and find their untrimmed versions to generate multiple mini
datasets with different scales but the same source. The S3D-G is pre-trained with HiCo on these datasets with the same
training iteration. Figure A2 shows the linear evaluation for the learned representations on both HMDB51 and UCF101. We
observe that HiCo consistently learns more powerful representations from untrimmed videos. This demonstrates that our
HiCo can be generalized to any untrimmed dataset scale.

3.3. Visualization

In Figure A3, we explore the spatial-temporal representations learned by standard contrastive learning and HiCo on
ActivieyNet-v1.3 dataset, using the tool of tSNE projection [12]. The S3D-G network is adopted as a feature extractor,
and each color in the figure represents an untrimmed video. When pre-training with the standard contrastive learning frame-
work, the separability of the features learned from untrimmed K400 is significantly worse than that from trimmed K400.
This implies forcing different video clips with low visual similarity to share the same feature embedding seriously confuses
the network. In comparison, our HiCo can always learn more robust representations regardless of the trimmed or untrimmed
dataset.

References
[1] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings of 1995 34th IEEE Conference

on Decision and Control, volume 1, pages 560–564. IEEE, 1995. 3
[2] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. Siam Review, 60(2):223–

311, 2018. 3
[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual

representations. In ICML, pages 1597–1607. PMLR, 2020. 5
[4] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal

on Optimization, 23(4):2341–2368, 2013. 3
[5] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? In

CVPR, pages 6546–6555, 2018. 6
[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 6
[7] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen. Bmn: Boundary-matching network for temporal action proposal genera-

tion. In Proceedings of the IEEE International Conference on Computer Vision, pages 3889–3898, 2019. 6
[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 6
[9] Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Applied optimization. Kluwer Academic Publ., 2004.

2
[10] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi

Fiziki, 3(4):643–653, 1963. 2

[11] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions
for action recognition. In CVPR, pages 6450–6459, 2018. 6

[12] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008. 7
[13] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1999. 1
[14] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal feature learning: Speed-

accuracy trade-offs in video classification. In ECCV, pages 305–321, 2018. 6
[15] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888,

2017. 6

