
Appendix
A. Experimental Details

In this section, we provide additional details on
the datasets used, preprocessing steps, and experimen-
tal methodology. We include code to reproduce our ex-
periments at https://github.com/Liangqiong/
ViT-FL-main.

A.1. Detailed Image Pre-processing and Data Par-
titions

Kaggle Diabetic Retinopathy competition
(RETINA) [27] contains a total of 17, 563 pairs of right
and left color digital retinal fundus images. Each image
is labeled on a scale of 0 to 4 by a well-trained clinician,
indicating no, mild, moderate, severe, and proliferative di-
abetic retinopathy respectively. Following [7], we exclude
the samples with scale 1, and then binarize the remaining
labels to Healthy (scale 0) and Diseased (scale 2, 3 or 4).
Furthermore, we only use the left images in our study to
remove the confounding factor of different disease status
of left and right eyes for the same patient. We randomly
select 6, 000 balanced (3, 000 healthy and 3, 000 diseased)
images for training, 3, 000 balanced images as the global
validation dataset, and 3, 000 balanced images as the global
test dataset. Other image pre-processing steps include
rescaling as a radius of 300, local color averaging and
image clipping, resizing to 256 × 256, horizontal flipping,
and randomly cropping to 224 × 224. We choose a final
224 × 224 image dimension to be compatible with current
work in both CNNs [19] and Vision Transformers [12].

We simulate three sets of data partitions for the RETINA
dataset with each data partition containing four simulated
clients: one IID-data partition (Split 1, KS-0), and two non-
IID data partitions with label distribution skew (Split 2, KS-
0.49, and Split 3, KS-0.57). See Figure 8 for the detailed
non-IID data partitions.

CIFAR-10 [31] consists of 50, 000 training and 10, 000
testing 32× 32 images in 10 classes, with 5, 000 and 1, 000
images per class in training and test dataset respectively.
Following [21], we apply the 10, 000 image test dataset as
the global test dataset, set aside 5, 000 images from the
training dataset as the global validation dataset, and the
remaining 45, 000 images as training dataset. We prepro-
cess each image by resizing to 256 × 256 and cropping to
224× 224.

We simulate one IID-data partition (Split 1, KS-0), one
heterogeneous data partition (Split 2, KS-0.65), and one
heterogeneous data partition in the extreme case (Split 3,
KS-1). Each data partitions contains five clients [7]. We
randomly assign each client with images sampled via a uni-
form distribution over the 10 classes for the IID data parti-
tion Split 1, KS-0. For Split 2, KS-0.65, one client receives

images sampled from two classes, while the remaining four
clients receive images sampled from four classes. Split 3,
KS-1 is an extreme case where each client receives images
sampled from only two classes. Please refer to Figure 9 for
the detailed label distribution on each client for Split 2 and
Split 3.

CelebA is a large-scale face attributes dataset with more
than 200K celebrity images. The images in CelebA cover
large diversities, i.e., large pose variations and background
clutter. We use a specially designed federated version of
CelebA provided by the LEAF benchmark [5] which parti-
tions the dataset into devices based on the celebrity in the
picture (i.e., each device contains only images of celebrity).
Following [5], we test on the binary classification task (p-
resence of smile), drop clients with larger than 8 samples to
increase the difficult. This results in a total of 227 clients
with an average of 5.34± 1.11 samples and a total of 1213
samples. for the histogram of the number of training sam-
ples in each client. We preprocess each image by resizing
to 256× 256 and cropping to 224× 224.

A.2. Implementation Details and Hyperparameters

Implementation Details. All the methods are imple-
mented with Pytorch and optimized either with SGD (with
momentum as 0.9 and no weight decay) or AdamW [29]
(with weight decay as 0.05). All experiments were con-
ducted on either a TITAN V GPU or GeForce RTX 2080
GPU. For fair comparison, all the models used in this paper
are pretrained from ImageNets ILSVRC-2012 [10]. We set
local training epoch in all the FL methods to 1, and the total
communication round to 100, unless otherwise stated. We
set the local training batch size to 32, and adopt a default
input image resolution 224 × 224 for all methods. More
implementation details are shown below.

Training hyperparameters: Inherited from original
Transformers training, the Swin-FL models are optimized
with AdamW [29], and the ViT-FL models are optimized
with SGD. As a fair comparison, the optimizers for the com-
pared CNNs are selected from either SGD and AdamW ac-
cording to parameter searching. We use linear learning rate
warm-up and decay scheduler for the Transformer model-
s. Specifically, we set the warmup steps to 500, and cosine
learning rate decay to zero after the maximum round of FL
training epochs is reached. The learning rate scheduler for
FL with CNNs is selected from linear warm-up and decay
or step decay (halved every 30 rounds of FL training). Gra-
dient clipping (at global norm 1) is applied to stabilize the
training.

Hyperparameter selection: We tune the best parame-
ters (including learning rate scheduler, and penalty constant
µ in the proximal term of FedProx) for FL with CNNs on
Split-2 of RETINA and CIFAR-10 dataset with grid search,
and apply the same parameters to all the remaining data par-



titions, including the extreme large-scale edge case setting.
The detailed hyperparameters of different models for RETI-
NA and CIFAR-10 are shown in Table 5.

FL hyperparameters: For RETINA and CIFAR-10,
we set the number of local training epochs E on each
client to 1 (unless otherwise stated) and the total num-
ber of communication rounds to 100, with all local clients
participating in FL training in each round. β is select-
ed from {0.1, 0.3, 0.5, 0.7, 0.9, 0.97, 0.99, 0.997} for Fe-
dAVGM [22], and is set to 0.5 and 0.3 for Retina and
CIFAR-10 dataset, respectively. In FedProx [37], µ is set
to 0.001 for Retina dataset and 0.1 for CIFAR-10 dataset
by selecting from {0.001, 0.01, 0.1, 1}.

For the CelebA dataset, we randomly sample 10 clients
in each round of FL learning for parallel FL methods. We
set E to 1, the maximum train round to 30 for CWT, and
1000 for all the other parallel FL methods, to ensure each
local client joins in FL training for around 30 rounds. µ
of FedProx is set to 0.001 for CelebA dataset. We al-
low each client to share 5% percentage of their data a-
mong each other for FedAVG-Share on all the compared
datasets. The detailed hyperparameters are shown in Table 5
and Table 6. Please refer to our anonymous project page
https://github.com/ViT-FL/ViT-FL-main for
an implementation to reproduce our results.

B. Additional Results
B.1. Take-aways for Practical Usage

The training strategy of VIT in FL can be directly in-
herited from VIT training, such as using linear warm-up
and learning rate decay, and gradient clip. We also notice
that gradient clip stabilizes training for most FL method-
s on the highly heterogeneous data partition, and therefore
can be applied as a general technique in FL applications (see
Figure 10 of ViT(B)-FL and ResNet(50)-FedAVG with and
without gradient clip). The training of VIT-CWT favors a
relatively smaller learning rate on heterogeneous data parti-
tions, whereas using a smaller learning rate for CNN coun-
terparts leads to worse performance. In real-world appli-
cations, users can use a large learning rate for IID or mild-
skewed data partitions for VIT-CWT, but a smaller learning
rate is necessary to stabilize training for highly heteroge-
neous data partitions.

B.2. Experiments on Real-World Federated
Datasets

We further evaluate on a large-scale real-world dataset,
OpenImage image classification [32] collected from Flickr,
containing 1.3M images spanning 600 categories across 14k
clients. We select the categories with #samples per class
between 20 and 800 from the dataset, resulting in 81,088
images spanning 365 categories across 9,265 clients. We
use similar training parameters to CelebA for OpenImage,

i.e., we randomly sample 10 clients in each round of FL
learning for parallel FL methods. We set E to 1, the maxi-
mum train round to 30 for CWT, and 27,000 for all the other
parallel FL methods, to ensure each local client joins in FL
training for around 30 rounds. From Table 8, VIT signif-
icantly outperforms ResNets on this heterogeneous large-
scale real-world data partition, even outperforming ideal
centrally-hosted models (60.56% for ResNet and 63.50%
for VIT on centrally-hosted dataset)

R-CWT ViT-CWT R-FedAVG R-FedProx R-FedAVG-Share ViT-FedAVG
41.62 64.39 50.92 51.39 55.34 67.95

Table 8. Prediction accuracy (%) on a large-scale real world
dataset OpenImage [Ref.A], covering 365 categories across 9,265
clients. VITs significantly outperform their ResNet (R in Table)
counterparts.

B.3. Investigating the Influence of Normalization
Technique in VIT-FL

The batch normalization layer has been shown to be one
of the major factors that deteriorate the performance of fed-
erated learning methods on non-IID data partitions [16,21].
Hsieh et al. [21] demonstrate that group normalization (or
layer normalization) can avoid the skew-induced accuracy
loss of batch normalization on non-IID data. This may raise
the question: does the promising performance of VIT-FL
come purely from not using a batch normalization layer?
To answer this question, we compare VIT-FL with FL-
ResNet50 (GN) by replacing all batch normalization lay-
ers in ResNet(50) with group normalization. As shown in
Table 7, group normalization indeed helps to obtain better
performance for both CWT and FedAVG on mildly skewed
data partitions than their batch normalization counterpart-
s. For example, the performance on Split-2 of CIFAR-10 is
improved from original 56.46% to 93.87%. However, it still
suffers performance loss on highly skewed data partitions.
In contrast, VIT-FL consistently shows promising results
on both mildly skewed and extremely highly skewed data
partitions (see Figure 3 in main body paper for our result-
s), indicating that the effectiveness VIT-FL does not arise
purely from different normalization techniques.

B.4. Comparisons to Existing FL Methods
We compare VIT-FL to several state-of-the-art opti-

mization based FL methods: FedAVGM [22], FedProx [37],
and FedAVG-Share [67]. We use ResNet-50 as the back-
bone network for all the compared FL methods. We tune the
best parameters (including learning rate, momentum param-
eter β for FedAVGM, and penalty constant µ in the prox-
imal term of FedProx) on Split-2 dataset with grid search,
and apply the same parameters to all the remaining data par-
titions. We allow each client to share 5% percentage of their
data among each other for FedAVG-Share.

As shown in Figure 11, VIT-FL outperforms all the
other FL methods in non-IID data partitions. Both Fed-



Models Dataset Split type Total Round Optimizer type Warm-steps LR decay Base LR
ResNets-CWT Retina & CIFAR-10 All 100 SGD 500 cosine 0.03
EfficientNets-CWT Retina All 100 AdamW 500 cosine 0.0005
EfficietNets-CWT CIFAR-10 All 100 SGD 500 cosine 0.03
ViTs-CWT Retina & CIFAR-10 All 100 SGD 500 cosine 0.003
Swins-CWT Retina & CIFAR-10 All 100 AdamW 500 cosine 3.125× 10−5

ResNets-FedAVG Retina & CIFAR-10 All 100 SGD 500 cosine 0.03
EfficientNets-FedAVG Retina All 100 AdamW 500 cosine 0.0005
EfficientNets-FedAVG CIFAR-10 All 100 SGD 500 cosine 0.03
ViTs-FedAVG Retina & CIFAR-10 All 100 SGD 500 cosine 0.03
Swins-FedAVG Retina & CIFAR-10 All 100 AdamW 500 cosine 3.125× 10−5

ResNet(50)-FedAVGM [22] Retina All 100 SGD 0 step 0.03
ResNet(50)-FedAVGM [22] CIFAR-10 All 100 SGD 500 cosine 0.03
ResNet(50)-FedProx [37] Retina All 100 SGD 0 step 0.03
ResNet(50)-FedProx [37] CIFAR-10 All 100 SGD 500 cosine 0.03
ResNet(50)-FedAVG-Share [67] Retina & CIFAR-10 All 100 SGD 500 cosine 0.03

Table 5. Table of hyperparameters for experiments on RETINA and CIFAR-10 with ResNets [19], EfficientNets [59], ViTs and Swins [41].
Gradient clip at global norm 1 are applied to all models to stabilize the training. The learning rate is halved every 30 epochs in the step
decay scheduler.

Models Avg. Total Round Warm-steps Optimizer type LR decay Base LR
ResNet(50)-CWT 30 500 SGD cosine 0.03
ResNet(50)-FedAVG 30 500 SGD cosine 0.03
ResNet(50)-FedProx 30 500 SGD cosine 0.03
ResNet(50)-FedAVG-Share 30 500 SGD cosine 0.03
ViT(S)-CWT 30 500 SGD cosine 0.003
ViT(S)-FedAVG 30 500 SGD cosine 0.03

Table 6. Table of hyperparameters for experiments on CelebA and OpenImage. All methods are optimized with SGD (momentum 0.9 and
no weight decay), and gradient clip at global norm 1.

Prox [37] and FedAVGM [22] suffer severe performance
drops on highly heterogeneous data partitions despite care-
fully tuned optimization parameters. Similarly, FedAVG-
Share also suffers from performance drops on highly het-
erogeneous data partition Split-3 even when 5% percentage
of the local data is shared among all clients (94.2% of Split-
3 on CIFAR-10 dataset compared to 96% on Split-1). We
conclude that simply using Transformers achieve superior
performance than several recent methods designed for fed-
erated optimization, which often require careful tuning of
optimization parameters.



RETINA CIFAR-10
Split-1 Split-2 Split-3 Split-1 Split-2 Split-3

ResNet(50)-CWT 79.44 77.01 71.30 96.08 56.46 19.92
ResNet(50)(GN)-CWT 82.21 81.13 77.05 95.10 93.87 87.70
ResNet(50)-FedAVG 80.48 76.36 75.99 96.51 93.14 59.68

ResNet(50)(GN)-FedAVG 82.40 80.13 80.57 96.39 95.12 86.20

Table 7. Prediction accuracy (%) of CWT and FedAVG on RETINA and CIFAR-10 when using ResNet50 and ResNet50(GN) as the
backbone network. Replacing the batch normalization layer with group normalization in ResNet50 still suffers performance loss on
highly heterogeneous data partitions, indicating that the promising performance of VIT-FL does not come purely from not using batch
normalization.
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Figure 8. Detailed non-IID data partitions on RETINA with label distribution skew. The value in each rectangle shows the fraction of data
samples of a class over their total number.

(a) Split 2, KS-0.65 (b) Split 3, KS-1
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Figure 9. Detailed non-IID data partitions on CIFAR-10 with label distribution skew. The value in each rectangle shows the fraction of
data samples in a class over their total number.



Split 3, KS-0.57 (Retina) Split 3, KS-1 (CIFAR-10)

Figure 10. Influence of gradient clip on different FL methods with ViT(B) and ResNet-50(R50) as the backbone networks, respectively.
In the legend, -W denotes with gradient clip and -Wo denotes without gradient clip. We find that gradient clip stabilizes training and
accelerates convergence speed on highly heterogeneous data splits.

Retina dataset CIFAR-10 dataset
Figure 11. Comparisons with state-of-the-art optimization based federated learning methods with ResNet-50 as backbone. Vision
Transformer-based FL methods (ViT(S)-CWT and ViT(S)-FedAVG) outperform other methods in non-IID data partitions.


