
Supplementary Material
In Section A, we provide continual learning results on

the IRCC benchmark [1]. In Section B we investigate to
which extent MILe is able to recover labels that were not
present in the original dataset. In Section C we provide
additional details on the domain generalization experiment.
In Section D, we provide additional results for multi-label
classification on CelebA. In Section E, we test additional
iterated learning schedules such as that of noisy student.

A. IIRC benchmark
We explore whether MILe can incrementally learn an

increasingly complex class hierarchy by teaching previously
seen tasks to new generations. We experiment with Incre-
mental Implicitly-Refined Classification (IIRC) [1], an ex-
tension to the class incremental learning setup [45] where
the incoming batches of classes have two granularity lev-
els, e.g. a coarse and a fine label. Labels are seen one at a
time, and fine labels for a given coarse class are introduced
after that coarser class is visited. The goal is to incorporate
new finer-grained information into existing knowledge in a
similar way as humans learn different breeds of dogs after
learning the concept of dog.

A.1. Metrics
As it can be seen in Fig. 6, the two reported metrics

are the precision-weighted Jaccard similarity and the mean
precision-weighted Jaccard similarity.

Precision-weighted Jaccard Similarity. The Jaccard
similarity (JS) refers to the intersection over union between
model predictions Ŷi and ground truth Yi for the ith sample:

JS =
1

n

nX

i=1

|Yi \ Ŷi|
|Yi [ Ŷi|

, (2)

The precision-weighted JS for task k is the product between
the JS and the precision for the samples belonging to that
task:

Rjk =
1

nk

nkX

i=1

|Yik \ Ŷik|
|Yik [ Ŷik|

⇥ |Yik \ Ŷik|
Ŷik

where (j � k), Ŷik is the set of (model) predictions for
the ith sample in the kth task, Yik are the ground truth labels,
and nk is number of samples in the task. Rjk can be used
as a proxy for the model’s performance on the kth task as it
trains on more tasks (i.e. as j increases).

Mean precision-weighted Jaccard similarity. We evalu-
ate the overall performance of the model after training until

(a) IIRC-ImageNet

(b) IIRC-CIFAR10

Figure 6. IIRC evaluation. (a) Average performance on IIRC-
ImageNet-lite. (b) Average performance on IIRC-CIFAR10. We
run experiments on five different task configurations and report the
mean and standard deviation. Left: average performance when the
tasks are equally weighted irrespective of how many samples exist
per task. Right: average performance over the number of samples.
In this case, the first task has more weight since it is larger in the
number of samples.

the task j, as the average precision-weighted Jaccard similar-
ity over all the classes that the model has encountered so far.
Note that during this evaluation, the model has to predict all
the correct labels for a given sample, even if the labels were
seen across different tasks.

A.2. Results.
Following the procedure described by Abdelsalam et al.

[1], we train a ResNet-50 on ImageNet and a reduced
ResNet-32 on CIFAR100. Also following Abdelsalam et al.
[1], we compare with an experience replay (ER) baseline and
a finetune lower-bound. We report the model’s overall per-
formance after training until task i as the precision-weighted
Jaccard similarity between the model predictions and the
ground-truth multi-labels over all classes encountered so far.
We report IIRC-ImageNet-lite evaluation scores in Fig. 6a
and CIFAR in Fig. 6b. In all cases, we find that iterative
learning increases the performance with respect to the ER
baseline by a constant factor. This suggests that MILe helps
prevent forgetting previously seen labels by propagating
them through the iterated learning procedure.

B. ReaL label recovery
The goal of MILe is to alleviate the problem of label

ambiguity by recovering all the alternative labels for a given
sample. We define alternative labels as those that were not



originally present in the ground truth. In this section, we
evaluate how much of those alternative labels are recovered
with MILe.

Method ResNet-50 ResNet-18
10% data 100% data 10% data 100% data

Softmax 0.2171 0.2679 0.1983 0.2648
Sigmoid 0.2310 0.2845 0.2047 0.2836
MILe (ours) 0.3042 0.3248 0.2187 0.2880

Table 6. Secondary label recovery. Mean average precision over
labels that appear in ReaL but not in the original ImageNet valida-
tion set.

Table 6 displays the mean average precision on the alter-
native labels present in ReaL [8]. As it can be seen, MILe is
able to recover up to 7% more labels than replacing softmax
by sigmoid and binary cross entropy during training.

C. Details on Domain Generalization
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Figure 7. ColoredMNIST+. During training, the model is asked
to classifier either digits or colors. Digits are highly correlated with
their color, e.g. 0-4 tend to be green while 5-9 tend to be red. At
test time, digits are less correlated with color.

In order to investigate how models perform outside of
their original training distribution, Arjovsky et al. [3] in-
troduced ColoredMNIST, a dataset of digits presented in
different colors. In order to create spurious correlations,
the color of the digits is highly correlated with the value
itself. During training, data is sampled from two different
image-label distributions or environments. In the first one,
the correlation between digit and color is 90% and in the
second is 80%. The correlation between the digit and color
is 10% at test time. Since we want to explore the effect on
generalization when the model is able to predict the digit and
the color independently, we add a 33% chance of showing a
blank image with no digit and only background color, where

Method F1-score
CE-Sigmoid 80.14
ResNet-18(FPR) [7] 77.55
ResNet-34 (FPR) [7] 79.96
MILe (ours) 81.40

Table 7. Comparison on CelebA multi-attribute classification. Just
as in ReaL ImageNet validation, we use F1-score (based on the
intersection over union) measure to evaluate the methods.

Figure 8. Ablation study. Comparison with noisy student (NS).

the background color is the label. This would be equivalent
to a "beach" class in ImageNet. Note that this change does
not remove the spurious correlations between the existing
digits and their color. We call this benchmark ColoredM-
NIST+, see Fig. 7. During training, iterated learning builds
a multi-label represenation of the digits, often including
their color, leading to better disentanglement of the concepts
"digits" and "color".

D. Multi-label classification on CelebA
We provide results on CelebA [41], a multi-label dataset.

CelebA is a large-scale dataset of facial attributes with more
than 200K celebrity images, each with 40 attribute anno-
tations that are known to be noisy [55]. We report results
in Table 7. Interestingly, despite the fact that CelebA is a
multi-label dataset, we observe a ⇠ 1% improvement in F1
score when using the proposed iterative learning procedure.
This along with per-class balanced accuracy in Table 8 is in
line with our hypothesis that the iterated learning bottleneck
has a regularization effect that prevents the model from learn-
ing noisy labels [43]. It is worth noting that MILe shows
improved scores for the attributes that are difficult to classify
such as big-lips, arched-eyebrows and moustache.

E. Comparisons with Noisy Student Scehdul-
ing

Xie et al. [63] introduced noisy student for labeling unla-
beled data during semi-supervised learning. This is different
from the goal of MILe, which is to construct a new multi-
label representation of the images from single labels. Dif-
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Triplet-kNN [52] 91 92 57 47 82 61 63 61 60 64 71 92 63 77 69 84 91 50 73 75
PANDA [68] 99 93 63 51 87 66 69 67 67 68 81 98 66 78 77 90 97 51 85 78
Anet [41] 99 96 61 57 93 67 77 69 70 76 79 97 69 81 83 90 95 59 79 84
MILe 99 95 74 77 94 64 75 69 77 74 87 94 74 83 84 94 93 56 77 81

Table 8. Mean per-class balanced accuracy in percentage points for each of the 40 face attributes on CelebA.

ferent from MILe, which trains a succession of short-lived
teacher and student models, noisy student trains the model
three times until convergence. This raises the question of
how would MILe perform if it followed noisy student’s it-
eration schedule instead of the one introduced in the main
text.

In Fig. 8 we compare the performance of the best MILe
iteration schedule with the NS schedule. We found that
MILe achieves the best performance in terms of the ReaL-F1
score.
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