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Fig. 1. Qualitative results on Booster Unbalanced testing split. We show the reference image (top) and ground-truth map (bottom) on

leftmost column, followed by disparity (top) and error maps (bottom) for the deep models evaluated in our benchmark.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

55.96 36.81 27.87 22.33 9.86 19.36

53.28 30.31 19.72 13.04 5.45 7.62

63.86 38.31 25.99 19.18 6.39 10.41

76.33 55.93 40.34 32.52 17.62 24.12

84.20 70.31 60.53 52.64 27.45 34.62

Table 1. Results on the Booster Unbalanced testing split – ma-

terial segmentation. We run RAFT-Stereo [3], using weights

made available by their authors.

In this document, we provide additional details concern-

ing CVPR submission “Open Challenges in Deep Stereo:

the Booster Dataset”.

1. Unbalanced Stereo Benchmark –

additional results

Because of page limit in the main paper, we report here

more detailed results concerning our experiments on the

Booster Unbalanced testing split, carried out in similarly

to those on the Balanced testing split.

Fig. 1 we provide some qualitative results dealing with

the predictions obtained by the networks evaluated in Tab. 4

∗ Joint first authorship.

Category

All

Class 0

Class 1

Class 2

Class 3

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

58.67 32.83 22.96 17.65 6.31 11.11

57.04 27.58 17.36 12.97 4.72 7.14

53.17 30.29 22.32 17.13 5.16 7.83

61.90 40.06 31.54 26.18 6.71 10.00

61.40 42.12 32.50 26.79 10.56 14.64

Table 2. Results on the Booster Unbalanced testing split after

fine tuning on the training split – material segmentation. We

run RAFT-Stereo, fine-tuned by Booster training split.

of the main paper, in order to better highlight how the trans-

parent regions represent one of the main causes of failure

for a stereo network on Unbalanced split as well, and show-

ing promising results after fine-tuning (rightmost column).

As described in the paper, material segmentation masks

are warped and made available for the Unbalanced testing

split as well. Thus, Tab. 1 reports error rates over the

different regions, sorted in increasing degree of difficulty,

achieved by RAFT-Stereo pre-trained model. Results on all

valid pixels are reported on top as a reference. Consistently

with the same experiment on the Balanced split, reported

in Table 2 of the main paper, we can notice a consistent

increase of the error metrics when going from simpler ma-

terials (class 0) to the most challenging ones (class 3). Tab.



Model

LEAStereo

LEAStereo (ft)

CFNet

CFNet (ft)

RAFT-Stereo

RAFT-Stereo (ft)

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

70.86 55.41 47.56 42.25 27.61 51.72

62.27 41.96 32.10 26.28 20.66 47.29

61.34 48.33 42.22 38.34 27.60 51.62

66.94 46.07 35.50 29.74 19.65 43.00

40.27 27.54 22.83 20.13 17.08 36.30

38.68 23.33 17.66 14.55 7.56 17.39

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

42.21 30.23 24.37 20.43 6.89 12.92

26.21 16.13 12.47 10.46 5.15 11.80

38.31 29.53 24.70 21.34 6.89 12.89

29.64 19.93 15.59 12.73 4.78 10.42

20.13 15.13 12.85 11.05 4.27 9.05

14.46 9.47 7.32 5.76 1.87 4.23

(a) Full res. (b) Quarter res.

Table 3. Results on the Booster Balanced testing split after fine tuning on the training split We run RAFT-Stereo, LEAStereo, and

CFNET fine-tuned by Booster training split, processing quarter resolution images. We evaluate on full resolution ground-truth maps, or

by downsampling them to quarter resolution.

Model

LEAStereo

LEAStereo (ft)

CFNet

CFNet (ft)

RAFT-Stereo

RAFT-Stereo (ft)

All pixels

bad-2 bad-4 bad-6 bad-8 MAE RMSE

(%) (%) (%) (%) (px.) (px.)

70.86 55.41 47.56 42.25 27.61 51.72

67.96 44.90 32.86 26.38 14.34 29.27

70.22 53.20 43.61 37.10 16.19 28.78

67.31 46.18 35.18 28.69 12.99 27.16

55.96 36.81 27.87 22.33 9.86 19.36

58.67 32.83 22.96 17.65 6.31 11.11

Table 4. Fine-tuning – unbalanced setting.

2 reports the outcome of the same experiment, this time us-

ing RAFT-stereo weights after fine-tuning on the Booster

Unbalanced training split. We can observe substantially the

same trend, except for bad-2 errors. The gap on these lat-

ter across the different classes is indeed lower compared to

Tab. 1. We ascribe this to the additional challenges intro-

duced with the unbalanced setup – absent in the Balanced

split.

2. Finetuning by the Booster training data –

additional networks

We extend the experiment of Tab. 3 of the main pa-

per, by fine-tuneing two additional networks, LEAStereo

and CFNet. We report results for the unbalacend setting in

Tab. 4, and for the balanced setting at full and half resolu-

tion in Tab. 3, validating on All pixels. In both tables we can

notice that fine-tuning on the training split of Booster effec-

tively improves performances for all networks in the test

split, meaning that the annotation provided by our dataset

help addressing the open-challenges highlighted in the pa-

per.

3. Cross-verification with LiDAR sensor.

To further validate our ground-truth generation pipeline,

we acquire a further scene and generate depth labels using

both an Intel Realsense L515 LiDAR as well as our Space

Time Stereo technique. The two are in close agreement as

about 82 % of the measurements differ by less than 1 cm

and the RMSE between such coherent depths is about 3.3

mm. Since the LiDAR itself is noisy, as in the main paper

we measure the residuals between fitted planes and the ac-

tual depths yielded by both. Our technique turns out more

accurate due to the residuals yielded by the LiDAR and our

method being 0.12 and 0.05, respectively. Fig. 2 shows the

two point clouds.

4. Dataset Samples

We add here some qualitative samples depicting the va-

riety and complexity of our dataset.

In Fig. 3 and 4 we show 4 examples of scenes delivered

with our dataset, comprising the balanced and unbalanced

setup, the material segmentation mask, disparity ground-

truths etc. In Fig. 5 we show point cloud visualization of

the disparity maps, clearly showing the high quality of our

ground-truths. Finally, in Fig. 6 we show some samples

coming the 15K unlabeled images shipped with our dataset.

The pictures were acquired in several different scenarios,

both indoor and outdoor, with the latter acquired also in dif-

ferent time and weather conditions. We highlight that a lot

of unlabeled frames include specular and transparent ob-

jects.

5. Camera Calibration Procedure

In this section, we detail the calibration procedure

needed to gather images and accurate ground-truth depth

labels, sketched in the leftmost block of Fig. 2 of the main

paper.

Calibration of individual cameras. We first calibrate

each camera separately using the pinhole camera model.

Purposely, we acquire N images (i.e., 15) containing a

known pattern (i.e., a chessboard) using the trinocular rig

featured in Fig. 3 of the main paper.

The distortion-free projective transformation performed

by a pinhole camera model is given by:

p = A[RT ]Pw (1)

where Pw is a 3D point expressed according to the world

reference frame (WRF), p is a 2D pixel in the image plane,

A is the intrinsic parameters matrix and R, T are the rota-

tion and translation from the world reference frame (WRF)
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Figure 2. Cross-verification with Intel L515 LiDAR.

to the camera reference frame (CRF), respectively. We fol-

low the OpenCV convention to model lens distortion by

means of a vector of parameters Dist = (k1, k2, k3, p1, p2)
with k1, k2, k3 denoting the radial distortion parameters and

p1,p2 the tangential distortion parameters

Given a chessboard, we can find in the images a set

of key-points (i.e., the inner corners of the chessboard)

for which we know the exact 3D position in the WRF

and, accordingly, build a set of 2D-3D correspondences.

We estimate the 2D coordinates of the corners, namely

pL, pC , pR, in the L,C,R cameras, respectively, by using a

standard corner detection algorithm. By calibrating inde-

pendently each camera of the rig we estimate their intrin-

sic matrices AL, AC , AR and the lens distortion parameters

DistL,DistC , and DistR of the L,C, and R cameras, re-

spectively. We can then undistort the images to perform a

stereo calibration of the two stereo rigs, i.e., the L− C and

L − R pairs. We can thus estimate the rotations RLC ,RLR

and translations TLC ,TLR, from the L to C, and L to R

camera reference systems, respectively.

Balanced Stereo Calibration. At this point, we can es-

timate the rectification transformations (i.e. homographies)

to be applied to both images of the stereo rig to produce rec-

tified stereo pairs. In the case of the L−R balanced stereo

system, we can address the problem as a standard rectifica-

tion since the resolution is the same for both images. Thus,

we rely on the OpenCV implementation to estimate the new

intrinsic matrix ALR
L and ALR

R , and the rotations RLR
L and

RLR
R of L and R to map the initial image plane into the rec-

tified image plane. We can use this information to obtain

the LLR and RLR rectified stereo pair.

Unbalanced Stereo Rectification. To rectify images ac-

quired by the L−C unbalanced stereo system, we follow the

unbalanced rectification scheme sketched in [1], yielding

images that are rectified when brought to the same resolu-

tion by means of up-sampling or down-sampling operations

solely.

We denote the camera with the smaller HFOV as j

while the other one as i.

{

i = L, j = C if HFOVC < HFOVL

i = C, j = L if HFOVL < HFOVC

(2)

By modifying the intrinsic parameters of i, we simulate

a crop and scale of its images so as to match the HFOV ,

Aspect Ratio (AR) and size of j, and then calculate the rec-

tification transformation based on these parameters.

Hence, we calculate the new width and height of i, Ŵi

and Ĥi, which we use to crop the image with the larger

HFOV , thus making it matching the smaller HFOV one

while preserving the aspect ratio

Ŵi = 2 tan
HFOVj

2
fi (3)

Ĥi =
Hj

Wj

Ŵi (4)

Then, we change the intrinsic parameters of i to simulate

the crop and resize and thus match the resolution of j as

follows:

Âi =


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Ĥi

0 0 1







We estimate the rectification transformation as we would

have two cameras of height Hj and width Wj , finding the

new intrinsic ALC
L and ALC

R , and the rotations RLC
L , RLC

R ,

of L and C to map the initial image plane into the recti-

fied one. As we have estimated the intrinsic matrices at the

resolution of j , we rescale ALC
i with a vertical and horizon-

tal scale factors equal to Ĥi

Hj
and Ŵi

Wj
, respectively, in order

to adjust the focal length and piercing point of the camera.

Finally, we can rectify the unbalanced par and thus obtain

LLC and CLC .

Fig. 7 shows an example of images before and after the

rectification procedures described above.



Balanced Unbalanced Illumination Variations

Figure 3. Booster scene examples. First two columns: data made available in the balanced setup (12 Mpx stereo pair, material segmenta-

tion mask, left and right disparity maps and left-right consistency mask). Third column: data dealing with the unbalanced setup (12 Mpx -

1.1 Mpx image pair, high-res disparity map associated with the 12 Mpx image ). Last columns: additional 12 Mpx images acquired under

different illuminations.



Balanced Unbalanced Illumination Variations

Figure 4. Booster scene examples. First two columns: data made available in the balanced setup (12 Mpx stereo pair, material segmenta-

tion mask, left and right disparity maps and left-right consistency mask). Third column: data dealing with the unbalanced setup (12 Mpx -

1.1 Mpx image pair, high-res disparity map associated with the 12 Mpx image ). Last columns: additional 12 Mpx images acquired under

different illuminations.



RGB Left Disparity GT Point cloud

Figure 5. Booster disparity ground-truth examples. From left to right: RGB left image, disparity ground-truth after manual cleaning,

point cloud visualization.



Balanced Stereo Pair Unbalanced Stereo Pair

Figure 6. Booster passive examples. From left to right: left balanced, right balanced, left unbalanced, right unbalanced images.

6. Additional Details on Disparity Warping

As outlined in Sec. 3 of the main paper, in the case of

the unbalanced L − C stereo system, we need to warp the

left ground-truth DispLR
L aligned with L−R to obtain the

ground-truth DispLC
L aligned with the left image of L−C.

We know that the rectification transformation is only a



Raw Images Balanced Stereo Unbalanced Stereo

L: 4112×3008 C: 1936×1216 R: 4112×3008 LLR: 4112×3008 RLR: 4112×3008 LLC : 4112×3008 CLC : 1170×856

Figure 7. Rectification example. From left to right: L, R, and C raw images acquired by our trinocular rig. LLR,RLR rectified balanced

stereo pair from of the L−R stereo system. LLC ,CLC unbalanced rectified stereo pair from of the L− C stereo system.

change of intrinsic parameters and a rotation, thus an ho-

mography. Therefore, we can calculate the mapping be-

tween pixels of the left image LLR of the L − R stereo

system, with coordinate (u, v), and pixels of the left image

LLC of the L − C stereo system, with coordinate (u′, v′)
as:





u′

v′

1′



 = ALC
L RLC

L RLR
L

−1

ALR
L

−1





u

v

1



 (5)

Known this mapping we can perform a backward warp-

ing to obtain DispLC
L from DispLR

L . However, we need to

be change the disparity values according to the 3D rotation

and baseline change before warping. Thus, given the dispar-

ity map DispLR
L we first transform it to the corresponding

depth map DLR
L as follows:

DLR
L =

fLRbLR

DispLR
L

(6)

Where fLR is the focal length of the LLR and bLR is

the baseline of the stereo system L − R. Then, we back-

project each pixel of LLR to 3D using DLR
L and we rotate

it accordingly to R obtaining the pixel in the LLC reference

frame:





x′

y′

z′



 = RLC
L RLR

L

−1

DLR
L ALR

L

−1





u

v

1



 (7)

In this way we can create a depth map DLR→LC
L for

which any pixel (u, v) contains the depth value of the cor-

responding pixel aligned in the LLC reference frame, z′. At

this point we perform the backward warping of the depth:

DLC
L = φ(DLR→LC

L ) (8)

where φ is the backward warping operation that use the

mapping defined at Eq. 5 and DLC
L is the depth map aligned

with LLC . Finally we transform it to the ground disparity

map of LLC as:

DispLC
L =

fLCbLC

DLC
L

(9)

where fLC and bLC are the focal length of LLC and the

baseline of the L− C stereo system.
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