
Figure 7. Dataset size vs performance plot for PICK&PLACE.

A. Appendix

A.1. Pick&Place

Recall that in the pick-and-place task (PICK&PLACE), an
agent must follow an instruction of the form ‘Place the
<object> on the <receptacle>’, without being told the loca-
tion of the <object> or <receptacle> in a new environment.
The agent must explore and navigate to the object, pick it
up, explore and navigate to the receptacle, and place the
previously picked-up object on it. In this section, we go
over statistics of the human demonstrations dataset, how our
PICK&PLACE imitation learning (IL) agents scale as a func-
tion of training dataset size, and details of our reinforcement
learning baseline for PICK&PLACE.

A.1.1 Dataset Stats

Fig. 8 compares the episode length and action histograms for
human and shortest path demonstrations for PICK&PLACE.
Human demonstrations are longer (average 932 vs 342 steps
per demonstration) and have a more uniform action distri-
bution compared to shortest paths. Human demonstrations
also make use of all 9 actions whereas shortest path demon-
strations use only 6 actions. Notice, humans also tend to
stand idle and do nothing (50ms of idle time is translated
to a NO_OP action). They likely use this time to strategize
their next set of actions to explore the environment, which is
not the case in shortest path demonstrations (by design).

A.1.2 RL Baseline

Similar to the imitation learning baseline, our base policy is a
simple CNN+RNN architecture. We first embed all sensory
inputs using feed-forward modules. For RGB, we use a
randomly initialized ResNet18 [42]. For depth, we use a
ResNet50 that was pretrained on PointGoal navigation using
DDPPO [13]. In addition to RGBD observations, the policy
gets as input language instructions of the form ‘Place the
<object> on the <receptacle>’ encoded using a single-layer
LSTM [47]. RGBD and instruction features are concatenated
to form an observation embedding, which is fed into a 2-
layer, 512-d GRU at every timestep. We train this policy for
∼100M steps on ∼9.5k episodes.
Rewards. The agent receives a sparse success reward
rsuccess, a slack reward rslack to motivate faster goal-
seeking, an exploration reward rexplore, an object seen re-
ward rseen, a grab/release success reward rgrab_release, and
a drop penalty reward rdrop_penalty to penalize dropping
the object far from the receptacle. For incentivizing ex-
ploration, we use a visitation-based coverage reward from
Ye et al. [15]. We first divide the map into a voxel grid
of 2.5m × 2.5m × 2.5m voxels and reward the agent for
visiting each voxel. Similar to [15], we smooth rexplore
by decaying it by number of steps the agent has spent in
the voxel (visit count v). To ensure that the agent prior-
itizes PICK&PLACE (and not just exploration), we decay
rexplore based on episode timestep t with a decay constant
of d = 0.995. The agent is provided a reward for explo-
ration until it sees the object. Once it sees the object, it
receives a significant positive reward rseen, and then the re-
ward switches to a path-efficiency based navigation reward.
In addition, the agent also receives a significant positive
reward when it successfully grabs a object or releases the
object close to the receptacle.

rtotal = rsuccess + rslack + rexplore + rgrab_release (2a)
+ rdrop_penalty + rseen (2b)

rsuccess = 5.5 on success (2c)
rslack = −10−4 per step (2d)
rseen = 1.5 First time object seen (2e)

rdrop_penalty = −3.5 Object dropped > 2m away from receptacle (2f)
rgrab_release = 2.0 Grab / release success (2g)

rexplore = 0.25× dt

v
Until object seen (2h)

Results. A policy trained with this reward for 100M steps
fails to get beyond 0% success on the PICK&PLACE task.
The agent learns to pick up the object at the start of training
if it sees the object while navigating but it fails to search
for the receptacle and place the object on top of receptacle.
Overall, throughout training, the agent doesn’t solve the task



Method Success (↑) SPL (↑)

1) Random 0.4% 0.4%
2) RGBD+RL [19] 8.2% 2.7%
3) RGBD+Semantics+RL [50] 15.9% 4.9%
4) Classical Map + FBE 40.3% 12.4%
5) Active Neural SLAM [51] 44.6% 14.5%
6) SemExp [48] 54.4% 19.9%

7) IL w/ 40k Human Demos (Zero-Shot) 16.6% 2.5%

Table 5. ObjectNav results on the Gibson VAL split.

successfully even once demonstrating the difficulty of the
task and inadequacy of the above reward structure.

A.1.3 Performance vs. Dataset Size

Fig. 7 plots VAL success of our IL agent vs. the size of the
PICK&PLACE human demonstrations dataset. We trained
policies on 2.5k to 9.5k subsets of the data. Performance
continues to improve with more data and has not saturated.

A.2. Zero-shot OBJECTNAV results on Gibson

To test generalization of the IL agents trained on human
demonstrations, we report zero-shot results by transferring
our policy trained on 40k human demonstrations to the Gib-
son dataset [41] VAL split in Table 5. To enable zero-shot
transfer of semantic features, we remap the common goal
categories (chair, couch, potted plant, bed, toilet, TV, dining-
table) from Matterport3D [39] to Gibson goal category IDs.
Our IL agent achieves 16.6% success and 2.5% SPL (row
7) with no finetuning on Gibson dataset. Comparing our
zero-shot results to approaches trained on Gibson, our IL
agent is 0.5% better on success and 2.4% worse on SPL than
an RL baseline that takes RGBD + Semantics as input (row
3 vs. row 7), and it is 38.0% worse on success and 17.4%
worse on SPL than SemExp [48] (row 6 vs. row 7).

A.3. Estimating time using a LoCoBot motion
model

To estimate the time a robot would take to execute the col-
lected human trajectories in the real world, we use the Lo-
CoBot motion model from Krantz et al. [28]. This model
consists of a rotation function that maps turn angle to time
and a translation function that maps straight-line distance
to time. For estimating time required for grab/release ac-
tions, we replace them with 0.15m forward steps and use
the straight-line distance translation function. We use the
MOVEBASE controller from [28] for all our time estimates,
with the following rotation and translation equations:

yrotate = 0.000358φ2 + 0.108φ+ 2.23 (3)

ytranslate = 4.2x+ 0.362 (4)

A.4. Characterizing Learnt Behaviors

In this section, we describe the metrics used to characterize
the exploration behavior exhibited by these agents in Sec. 7
in the main paper. These include 1) Occupancy Coverage
(OC) and 2) Sight Coverage (SC) introduced in Sec. 4 in the
main paper, as well as 3) Goal Room Time Spent (GRTS) –
the number of steps as a fraction of total episode length an
agent takes within the room bounding box containing the
target object, 4) Peeks – check if the agent steps back into
the last visited room after taking just ∼10 steps in another
room, 5) Panoramic Turn (PT) – whether the agent stands at
one place and turns left and right to get sweeping views, 6)
Beeline – if the agent takes 10 continuous forward actions
before reaching the goal in the last 15 steps, 7) Exhaustive
Search (ES) – ≥ 75% sight coverage. To compute these
metrics, we use the semantic annotations in Matterport3D.
These annotations provide 3D bounding box coordinates for
each room category in an environment. We use these bound-
ing box coordinates to track the rooms an agent visits during
an episode. GRTS gives us a measure of how often the agent
ends up reaching goal object room but doesn’t successfully
locate the object. A higher GTRS suggests that the agent
is at least good at reaching semantically meaningful loca-
tions in search of the goal object. We find that RL agents
have higher average GRTS but also significantly higher vari-
ance in GRTS across scenes while our IL agents have lower
average GRTS but more consistently spend time in the tar-
get room (see Fig. 9). To evaluate not just the final room
the agent ends up at, but all the rooms it visits through the
course of an episode, we also plot distributions of the time
spent per room category for each goal object (see Fig. ??)
for human demonstrations vs. IL agents trained on human
demonstrations vs. RL agents.

A.5. Inter-human Variance in OBJECTNAV

To get a sense for the variance in OBJECTNAV human demon-
strations, we collected 20 unique human-provided trajecto-
ries for the same initial location and target object (‘cabinet’).
This is visualized in Fig. 10. We see that there is quite a bit
of diversity in navigation trajectories across humans. They
often navigate to different instances of the goal object cat-
egory ‘cabinet’, and even when multiple humans go to the
same object instance, the routes taken are different (red vs.
blue trajectory).

We also plot the average SPL per AMT user in our dataset
in Fig. 11. We find that human performance has a lot of
variability, ranging from 25.2% to 68.2% (Fig. 11a). The
SPL range that has the most humans is ∼50%. The best-
performing human annotator achieves an SPL of 68.2% av-
eraged over 6 episodes (Fig. 11b), which is particularly close
to shortest paths and arguably super-human.



Figure 8. Comparison of episode lengths and action histograms for human demonstrations vs. shortest paths for PICK&PLACE. Human
demonstrations are longer and have a more uniform action distribution than shortest paths.

Figure 9. Per scene breakdown of GRTS for IL and RL agent on
MP3D VAL split.

A.6. AMT Interface

Fig. 12 shows a screenshot of our AMT interface for collect-
ing PICK&PLACE demonstrations. For the PICK&PLACE
task, we provide humans with an instruction of the form

‘Place the <object> on the <receptacle>’, without being told
the location of the <object> or <receptacle> in a new envi-
ronment, and they can see agent’s first-person view of the
environment. They can make the agent move, look around,
and interact with the environment using keyboard controls.
Once the AMT user completes the task they can submit
the task by clicking the ‘Submit’ button. We then run task-
specific validation checks to ensure only successful tasks get
submitted.
Validation. To ensure data quality, every submitted AMT

Figure 10. Visualizing multiple human demonstrations for OB-
JECTNAV all starting from the same start position and searching for
‘cabinet’.

(a) (b)

Figure 11. a) Histogram of average SPL for each AMT user for
OBJECTNAV. b) Plot showing average SPL for AMT users for
OBJECTNAV. These plots clearly demonstrate some humans are
better at solving the OBJECTNAV task than others.

task goes through a set of validation checks. For OBJECT-
NAV, we use the same set of validation checks as the Habitat
challenge evaluation setup, i.e. a task is considered success-
ful only when the user has moved the agent to within 1m
of the goal object. We do not limit the maximum number
of steps to allow users on AMT to explore the environment.



Figure 12. Screenshot of our Amazon Mechanical Turk interface
for collecting PICK&PLACE demonstrations. Users are provided
the agent’s first-person view of the environment and an instruction
such as "Pick the toy airplane and place it on the the colored wood
blocks". They can make the agent look around and move in the
environment via keyboard controls, and can submit the task upon
successful completion by clicking the ‘Submit’ button.

This captures key human exploration behavior necessary to
succeed at these tasks. Similarly, for PICK&PLACE, a task
is considered successful when the target object is placed on
a receptacle object. Specifically, we check if the Euclidean
distance between the centers of the target and receptable
objects is less than 0.7m, and that the target object is at a
height greater than the receptacle center.

A.7. Limitations

Our approach is fundamentally limited by the limitations
of imitation learning as our approach uses vanilla behav-
ior cloning with inflection weighting. Additionally, these
agents trained on human demonstrations exhibit some com-
mon failure cases. Some examples of common failure cases
are – reaching close to the goal object but not within goal ra-
dius and ending episode early, trying to move straight when
agent is colliding and getting stuck, looping around multi-
ple instances of the goal object and as a result, exceeding
maximum episode steps, and exploring the environment and
not finding the goal object. Our approach is also limited by
the amount of human demonstrations we can gather and the
agent architecture being trained on this dataset. Currently,
we use a vanilla CNN+RNN architecture to learn imitation
learning policies but we can build better architecture which
make full use of the rich semantic information these human
demonstrations have.



Figure 13. Visualizations of learnt agent behaviors for OBJECTNAV and PICK&PLACE. Best viewed in videos at
sites.google.com/view/object-search-supp.



Figure 13. Visualizations of learnt agent behaviors for OBJECTNAV and PICK&PLACE. Best viewed in videos at
ram81.github.io/projects/habitat-web.



(a) Humans (b) IL on 40k Human demos (c) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(d) Humans (e) IL on 40k Human demos (f) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(g) Humans (h) IL on 40k Human demos (i) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(j) Humans (k) IL on 40k Human demos (l) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(m) Humans (n) IL on 40k Human demos (o) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(p) Humans (q) IL on 40k Human demos (r) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.



(s) Humans (t) IL on 40k Human demos (u) RL
Figure 14. Comparison of per room time spent for all MP3D goal categories on VAL split for human demonstrations vs. IL agents trained on
human demos vs. RL agents. The plot shows the top 10 rooms ordered by the maximum time spent in each room.


