
Surface Representation for Point Clouds
Supplementary Material

1. Preliminaries: Taylor Series for 2D curves
Talyor series [4] on the point (a, f(a)) of curve f(·)

presents as follows:

f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+· · · ,

(1)
which can be simplified as:

∞∑
n=0

f (n)(a)

n!
(x− a)n, (2)

where f (n)(a) is the n-th derivative of the curve f(·) at the
point (a, f(a)).

We present the assumption that the formulation of Taylor
Series can depict the local curve. Based on this assumption,
we further develop an extension to 3D space.

2. Preliminaries: Two-Variate Taylor Series for
3D surfaces

Taylor Series depending on two variables can be defined
as:

g(a, b) +
1

1!
(x− a, y − b) ·

(
∂g
∂x (a, b)
∂g
∂y (a, b)

)
+ · · · , (3)

where ∂g
∂x and ∂g

∂y are the partial derivatives. This
formulation presents two-variant taylor series on point
(a, b, g(a, b)) of surface g(·, ·).

This formulation reveals the basis of RepSurf. To sim-
ply the calculation, we consider the terms of the first and
second partial derivatives. Triangular RepSurf can be an
instantiation.

3. Details of Polar Auxiliary
We present two types of polar auxiliary, spherical and

cylindrical ones based on Spherical Polar System and
Cylindrical Polar System, respectively.

For a given point (x, y, z), spherical polar auxiliary pro-
vides the corresponding polar coordinate (ρs, θs, ϕs), where
ρs =

√
x2 + y2 + z2 ∈ [0,+∞), θs = arccos z

ρ ∈ [0, π],

ϕs = atan2(y, x) ∈ [0, 2π). For stable training, we nor-
malize the polar coordinate by θs divided by π and ϕs di-
vided by 2π. Though ρs has no upper bound in theory, ρs is
commonly limited within [0, r], where r is the radius of ball
query function [3]. Furthermore, to prevent the generation
of NaN, we set θs to 0 when ρs is 0. The pseudo-code of
spherical polar auxiliary is presented in Algorithm 1.

Accordingly, cylindrical polar auxiliary from (x, y, z)
gives the polar coordinate (ρc, θc, zc), where ρs =√

x2 + y2 ∈ [0, r], ϕs = atan2(y, x) ∈ (−π, π), zc = z ∈
[−r, r], r is the given radius of ball query function [3]. Sim-
ilarly, we normalize ϕs and zc into the range of [0, 1]. We
implement polar auxiliary by concatenation of the Carte-
sian coordinate (x, y, z) and (ρs, θs, ϕs) or (ρc, θc, zc). The
pseudo-code of cylindrical polar auxiliary in Algorithm 2.

Though extremely simple, our design of polar auxiliary
is not an incremental method and can be insightful. Po-
lar auxiliary is mainly relied upon the prerequisite that the
models learn the local shapes within the queried balls. This
prerequisite allows spherical polar coordinate to work with
Cartesian coordinate more reasonably. We argue that a
Cartesian coordinate is efficient to represent the location of
a point numerically according to the origin or the centroid.
However, it cannot obviously discriminate the locations of
two neighbors. When the two points are very close, Carte-
sian coordinates show few clues to tell both. In this case, θs
and ϕs can intuitively magnify the difference between the
two points numerically. Furthermore, ρs is an additional
ingredient to express the relationship between a neighbor
point and its centroid. Both empirical results and theoret-
ical analysis prove the effectiveness of our design of polar
auxiliary.

4. Details of Channel De-differentiation
We propose channel de-differentiation to handle the ob-

vious distribution imbalance between the maaped coorid-
nates and the mapped last-stage features in each stage of
set abstraction (SA) in a PointNet++ [3] model. An illus-
tration is shown in Fig. 1. This may lead to an ignorance
of the input of coordinates in the last few layers of MLPs.
We consider this is mainly caused by the difference of the
distributions of various types of input (like coordinates and

Figure 1. An example of the distributions of the mapped cooridnates (second-half channels, e.g., 64∼128 for the left images) and the
mapped features (first-half channels, e.g., 0∼64 for the left images) before element-wise summation during matrix multiplication in the
first layer of each stage. For an obvious comparison, we put these two modalities together in each plot, which does not mean that we
perform concatenation in our CD. Note that, for the first layer of each stage, PointNet++ w/o CD performs BN after the summation of the
mapped coordinates and features (the status like the above three images), while PointNet++ w/ CD performs BN before the summation
(the status like the below three images). The problem of distribution imbalance will weaken the importance of one of the two kinds of
input, and CD can alleviate this problem in a simple manner.

Algorithm 1 Pytorch-Style Pseudocode of Spherical Polar
Auxiliary
xyz: coordinates of a point set
rho = sqrt(sum(pow(xyz,2),dim=-1,keepdim=True))
rho = clamp(rho,min=0) # range: [0, inf]
theta = acos(xyz[...,2,None]/rho) # range: [0, pi]
phi = atan2(xyz[..., 1,None], xyz[..., 0,None]) #

range: [-pi, pi]

check nan
idx = rho==0
theta[idx] = 0

normalize
theta = theta/pi # [0, 1]
phi = phi/(2*np.pi)+.5 # [0, 1]
out = torch.cat([rho,theta,phi],dim=-1)
return out

high-level features).
Intuitively, we adopt batch normalization to alleviate the

difference of these distributions. In the first MLP of each
SA, the fused feature f1i of the i-th point can be rewrite as:

f1i = ω1([xi, fi]) = ω1
x(xi) + ω1

f (fi), (4)

where ω1 is a linear function, the concatenation of the
weights of ω1

x and ω1
f equals to the weights of ω1. xi and

fi corresponds to the coordinate and the high-level feature
from the last stage of the i-th point, respectively.

Commonly, when we add the normalization and non-

Algorithm 2 Pytorch-Style Pseudocode of Cylindrical Po-
lar Auxiliary
xyz: coordinates of a point set
rho = sqrt(sum(pow(xyz[...,:2],2),dim=-1,keepdim=

True))
rho = clamp(rho,0,1) # range: [0, 1]
phi = atan2(xyz[...,1,None], xyz[...,0,None]) #

range: [-pi, pi]
z = xyz[...,2,None]
z = torch.clamp(z,-1,1) # range: [-1, 1]

normalize
phi = phi/(2*pi)+.5
z = (z+1.)/2.
out = torch.cat([rho,phi,z],dim=-1)
return out

linearity to this formula, the feature can be presented as:

f1i = ReLU(BatchNorm(ω1
x(xi) + ω1

f (fi))). (5)

Empirically, the point-based models benefit from sepa-
rate application of batch normalization to xi and fi as fol-
lows:

f1i = ReLU(BatchNormx(ω
1
x(xi))+

BatchNormf (ω
1
f (fi))).

(6)

This tiny modification can significantly boost the perfor-
mance of point-based models as well. For our RepSurf, xi

may contain polar coordinates, and fi may be the features of
RepSurf, RGB information. An illustration of our Channel
De-differentiation is shown in Fig. 2

Figure 2. Illustration of our Channel De-differentiation.

5. Computation of FLOPs
To explore the efficiency of various models, we adopt the

same formulas of complexity for the calculation of FLOPs.
Since prior works are based on different versions of CUDA
point cloud operations or non-CUDA ones, it may lead to
an unfair comparison of efficiency based on FLOPs. There-
fore, we treat the point cloud operations, including farthest
point sampling, indexing, ball querying, knn querying, the
same for the final estimation of FLOPs of different mod-
els. Following the common rules of FLOPs calculation, We
count for the addition and multiplication of float points only.

For other basic operations, such as Convolution, ReLU,
MLP, we adopt the default settings of THOP 1.

6. Computation of Speed
We test all methods with one V100 GPU and four cores

Intel Xeon @ 2.50GHz CPU. The speed may vary with dif-
ferent sizes of input due to the parallelism of GPU. In this
case, we set the batch size to 16 for all methods on the tasks
of classification and segmentation. For detection, we set the
batch size to 1 on the same experimental workstation in [1].

The FLOPs of one model can present the efficiency radi-
cally and theoretically. For an overall view of the efficiency,
we adopt the practical method by testing the speed during
the process of training and inference.

7. Implementation details
Classification. We implement Triangular and Umbrella

RepSurf on PointNet++ [3] (SSG version). For both the
datasets of ModelNet and ScanObjectNN, we set the initial
learning rate to 0.001 with a decay rate of 0.7 for every 20
iterations. We use Adam for optimization. We apply data
augmentation (including random scale, random shift, ran-
dom dropout) when training on ModelNet, while we do not
apply any augmentation methods for ScanObjectNN. Con-
sidering the quality of surface reconstruction, we sample
1024 points with farthest point sampling (FPS) method be-
fore input. We normalize the point clouds into the range

1Official THOP repository: https://github.com/Lyken17/
pytorch-OpCounter.

of [−1, 1] for ModelNet. We apply label smoothing with a
ratio of 0.1.

Segmentation. We implement RepSurf on PointNet++
[3] (SSG segmentation version). For both the datasets of
S3DIS and ScanNet, we set the initial learning rate to 0.5,
with a decay rate of 0.1 on the 60th and 80th iteration. We
use SGD, with a weight decay of 1e−4 for optimization.
We apply data augmentation (including point cloud scaling,
color contrasting, color shifting, and color jittering) when
training on S3DIS and ScanNet. Considering the quality of
surface reconstruction, we sample points with grid sampling
method before input. We weight the loss with the ratio of
classes.

Detection. We implement RepSurf on ScanNet V2 and
SUN RGB-D following the practice of GroupFree [1].

8. Detailed Experimental Results

We reveal the details of detection on the datasets of Scan-
Net V2 (mAP@0.25 in Tab. 1 and mAP@0.5 in Tab. 2)
and SUN RGB-D (mAP@0.25 in Tab. 3 and mAP@0.5 in
Tab. 4).

9. Visualization

9.1. Surface Reconstruction of RepSurf

We visualize the results after the process of surface re-
construction in Fig. 3. Different from prior methods, we
only need to reconstruct discrete surfaces before calculat-
ing the features of Triangular and Umbrella RepSurf.

9.2. Geometry Sensitivity on Triangular RepSurf

We visualize the output of each channel of Triangular
RepSurf on ScanObjectNN in Fig 4. Triangular RepSurf is
eligible to perceive the local geometries numerically. Thus,
the points on a flat shape have similar color, while the color
of points on an edge changes obviously.

9.3. Geometry Sensitivity on Umbrella RepSurf

We visualize the output of each channel of Umbrella
RepSurf on ScanObjectNN in Fig 5. Intuitively, Umbrella

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter

Figure 3. Visualization of surface reconstruction for RepSurf.

Figure 4. Visualization of the values of 3 channels from the normal
vectors of Triangular RepSurf.

RepSurf can recognize the local geometries, including the
edges and the planes of objects.

Figure 5. Visualization of the values of 10 channels from Umbrella RepSurf.

methods backbone cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
VoteNet [2] PointNet++ 47.7 88.7 89.5 89.3 62.1 54.1 40.8 54.3 12.0 63.9 69.4 52.0 52.5 73.3 95.9 52.0 92.5 42.4 62.9
H3DNet [5] 4×PointNet++ 49.4 88.6 91.8 90.2 64.9 61.0 51.9 54.9 18.6 62.0 75.9 57.3 57.2 75.3 97.9 67.4 92.5 53.6 67.2
GroupFree6,256 PointNet++ 54.1 86.2 92.0 84.8 67.8 55.8 46.9 48.5 15.0 59.4 80.4 64.2 57.2 76.3 97.6 76.8 92.5 55.0 67.3
GroupFree6,256 RepSurf-U 55.5 87.7 93.4 85.9 69.1 57.3 48.8 50.0 16.5 61.0 81.6 66.2 59.0 77.5 99.2 78.2 94.0 56.8 68.8
GroupFree12,512 PointNet++2 52.1 91.9 93.6 88.0 70.7 60.7 53.7 62.4 16.1 58.5 80.9 67.9 47.0 76.3 99.6 72.0 95.3 56.4 69.1
GroupFree12,512 RepSurf-U2 54.6 94.0 96.2 90.5 73.2 62.7 55.7 64.5 18.6 60.9 83.1 69.9 49.4 78.4 99.4 74.5 97.6 58.3 71.2

Table 1. Performance of mAP@0.25 for each category on the ScanNet V2 dataset.

methods backbone cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
VoteNet [2] PointNet++ 14.6 77.8 73.1 80.5 46.5 25.1 16.0 41.8 2.5 22.3 33.3 25.0 31.0 17.6 87.8 23.0 81.6 18.7 39.9
H3DNet [5] 4×PointNet++ 20.5 79.7 80.1 79.6 56.2 29.0 21.3 45.5 4.2 33.5 50.6 37.3 41.4 37.0 89.1 35.1 90.2 35.4 48.1
GroupFree6,256 PointNet++ 23.0 78.4 78.9 68.7 55.1 35.3 23.6 39.4 7.5 27.2 66.4 43.3 43.0 41.2 89.7 38.0 83.4 37.3 48.9
GroupFree6,256 RepSurf-U 24.9 79.6 80.1 70.4 56.4 36.7 25.5 41.4 8.8 28.7 68.0 45.2 45.0 42.7 91.3 40.1 85.1 39.2 50.5
GroupFree12,512 PointNet++2 26.0 81.3 82.9 70.7 62.2 41.7 26.5 55.8 7.8 34.7 67.2 43.9 44.3 44.1 92.8 37.4 89.7 40.6 52.8
GroupFree12,512 RepSurf-U2 28.5 83.5 84.8 72.6 64.0 43.6 28.3 57.8 9.6 37.0 69.7 45.9 46.4 46.1 94.9 39.1 92.1 42.6 54.8

Table 2. Performance of mAP@0.5 for each category on the ScanNet V2 dataset.

methods backbone bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP
VoteNet [2] PointNet++ 75.5 85.6 31.9 77.4 24.8 27.9 58.6 67.4 51.1 90.5 59.1
H3DNet [5] 4×PointNet++ 73.8 85.6 31.0 76.7 29.6 33.4 65.5 66.5 50.8 88.2 60.1
GroupFree6,256 PointNet++ 80.0 87.8 32.5 79.4 32.6 36.0 66.7 70.0 53.8 91.1 63.0
GroupFree6,256 RepSurf-U 81.1 89.3 34.4 80.4 33.5 37.3 68.1 71.4 54.8 92.3 64.3
GroupFree12,256 RepSurf-U2 81.9 89.9 35.3 81.2 33.5 38.1 68.8 71.5 55.6 93.2 64.9

Table 3. Performance of mAP@0.25 for each category on the SUN RGB-D validation set.

methods backbone bathtub bed bkshf chair desk drser nigtstd sofa table toilet mAP
VoteNet [2] PointNet++ 45.4 53.4 6.8 56.5 5.9 12.0 38.6 49.1 21.3 68.5 35.8
H3DNet [5] 4×PointNet++ 47.6 52.9 8.6 60.1 8.4 20.6 45.6 50.4 27.1 69.1 39.0
GroupFree6,256 PointNet++ 64.0 67.1 12.4 62.6 14.5 21.9 49.8 58.2 29.2 72.2 45.2
GroupFree6,256 RepSurf-U 65.2 67.5 13.2 63.4 15.0 22.4 50.9 58.8 30.0 72.7 45.9
GroupFree12,512 RepSurf-U2 66.5 70.0 14.9 64.7 17.0 24.7 52.0 60.7 31.7 74.4 47.7

Table 4. Performance of mAP@0.5 for each category on the SUN RGB-D validation set.

References
[1] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.

Group-free 3d object detection via transformers. arXiv
preprint arXiv:2104.00678, 2021. 3

[2] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.
Deep hough voting for 3d object detection in point clouds.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9277–9286, 2019. 6

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 1, 3

[4] Brook Taylor. Methodus incrementorum directa et inversa.
Innys, 1717. 1

[5] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In European Conference on Computer Vision, pages
311–329. Springer, 2020. 6

