Supplementary Material: Consistency driven Sequential Transformers
Attention Model for Partially Observable Scenes

Samrudhdhi B. Rangrej®, Chetan L. Srinidhi®, James J. Clark®
“McGill University, Canada. *Sunnybrook Research Institute, University of Toronto, Canada.

samrudhdhi.rangrej@mail .mcgill.ca, chetan.srinidhi@utoronto.ca, Jjames.clarkl@mcgill.ca

We organize the supplementary material as follows. We
include additional results in Section 1, additional visualiza-
tion in Figure 5-6, and a pseudo code for training our STAM
in Algorithm 1.

1. Additional Results

1.1. Analysis of Consistency Loss with Baseline At-
tention Policies

In the main paper, we analyzed the gain in accuracy of
STAM when the proposed consistency loss (Equation 3 in
the main paper) is included in the training objectives. Here,
we analyze the same for the agents with baseline attention
policies, namely, the Random, the Plus, and the Spiral. We
train baseline agents with and without the proposed consis-
tency objective and plot the difference in their accuracy in
Figure 1. We observe that the consistency training objective
yields a positive gain in the accuracy for all baseline agents.

Furthermore, the gain achieved with learned policy (i.e.,
STAM) is higher than the heuristics-based baseline policies.
The gain in accuracy is highest for STAM as it learns to
attend to the most discriminative glimpses early in time.
These results align with the recent findings showing that
minimizing the distance between the predictions made from
two views of the same image improves model performance
the most when the views optimally share the task-specific
information [1].

1.2. Effect of Glimpse Size

We compare the performance of our agents with
glimpses of sizes 32 x 32, 48 x 48, and 64 x 64. To ex-
tract the non-overlapping glimpses, we resize the image to
224 x 224, 240 x 240, and 256 x 256 for the three glimpse
sizes stated above, respectively.

For the image-size 224 x 224, we use the teacher models
as discussed in the main paper. To train teacher models for
images of sizes 240 x 240 and 256 x 256, we finetune the
pretrained DeiT' on images of respective sizes, following

https://github.com/facebookresearch/deit

3.0 —— Random 8 —— Random
Plus Plus

:\;2.5 —+— Spiral :'\O\G —}— Spiral
590 —f— STAM (Ours) 3 —f— STAM (Ours)
5 5
3 3
<15 <4
= =
510 3
U] O,

0.5 L B

0.0l | NSENERARERS g

Y024 6 8101214161820 (’() 246 8101214161820
Time ¢ Time ¢
(@) (b)

Figure 1. Comparison of gain in accuracy of various baseline
agents with inclusion of consistency loss in their training objec-
tives. (a) ImageNet; (b) fMoW. Results for the Random and STAM
are presented as mean + std computed across ten independent
runs.

80

Accuracy (%)

| 64x64 0 | 64x64
4848 4848
—+— 3232 (default) —+— 32x32 (default)

0 10 20 30 10 50 0 10 20 30 10 50
Area observed in an image (%) Area observed in an image (%)

() (b)

Figure 2. Accuracy of STAM with different glimpse sizes pre-
sented as a function of % area observed in an image (a) ImageNet;
(b) fMoW. The results are presented as mean=+5Xxstd computed
across ten independent runs.

the procedure suggested by Touvron et al. [2]. We train all
agents following the same experimental setup discussed in
the main paper, except for the following. We train the agents
for image sizes 240 x 240 and 256 x 256 using batch sizes
of 2000 and 1600, and they observe a maximum of 16 and

80
~—60
=
oy
S0
<8 —— Tiny
2 —f— Small (default)
—}— Base
0 2 4 6 8 10 12 14 16 18 20
Time ¢

Figure 3. Accuracy of STAM with core of different capacity. We
compare DeiTP-Tiny, DeiT?-Small, DeiT”-Base architectures
for the core module. The results are presented as mean-+5Xstd
computed across ten independent runs.

7 glimpses per image.

As the glimpse and the image sizes are different, we
compare the accuracy of the three agents as a function of the
area observed in the image (see Figure 2). Initially, when an
area observed in an image is less than 20%, the agent with
smaller glimpses achieves higher accuracy than the agent
with larger glimpses. The reason is that the agent explores
more regions using smaller glimpses than the larger ones
while sensing the same amount of area. Once the agents
have observed sufficient informative regions (nearly 20%
of the total image area), their performance converges. We
use glimpse size 32 x 32 with image size 224 x 224 as our
default setting.

1.3. Effect of Model Capacity

To study the effect of model capacity on the per-
formance, we compare DeiTP-Tiny, DeiT?-Small, and
DeiTP-Base architectures as the core of our agent. The
three agents are trained using the same procedure as dis-
cussed in the main paper expect for the following. We train
agent with DeiT?-Base core using batch size of 512. We
use pretrained DeiTP of respective capacity as the teacher
model. Results for ImageNet are presented in Figure 3. We
observe increasing accuracy with increasing model capac-
ity. However, training an agent with DeiT?-Base is compu-
tationally expensive. To achieve a good trade-off between
efficiency and accuracy, we use DeiTP-Small as a default
architecture for our agent.

80 400 epochs
—— 200 epochs (default)
—
—~60
= / 57.5
)
(]
540 55.0
o
<
2.5
20 _
oO.O3 1 5
0 2 4 6 8 10 12 14 16 18 20
Time ¢

Figure 4. Accuracy of STAM on ImageNet when trained for 200
and 400 epochs. The results are presented as mean+5xstd com-
puted across ten independent runs.

1.4. Longer Training on ImageNet

We demonstrate that longer training improves the perfor-
mance of STAM on ImageNet. We compare performance of
STAM trained for 200 and 400 epochs in Figure 4. When
STAM is allowed to observe only five glimpses, longer
training yields 1.15% improvement in the accuracy. In con-
trast, we observe overfitting and reduced performance with
longer training on fMoW.

References

[1] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In Advances in Neural In-
formation Processing Systems, volume 33, pages 6827-6839,
2020. 1

[2] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In International Conference on Machine Learning, pages
10347-10357,2021. 1

Yo=medicine
|

z=medicine chest

_y=medicine chest =ananas
YEmeC e

A

yn=medicine chest

Yyiz=medicine chest

Yio=medicine yiz=medicine chest yjs=medicine chest y;s=medicine chest y;g=medicine chest y;;=medicine chest y;g=medicine chest ys=medicine chest Yao=medicine
chest chest

=icebox =shoe sho| =abacus =abacus =beaker 4=beaker =icebox =beaker ,=beaker =beaker =beaker

yi1=beaker y12=icebox yi3=beaker Yis=icebox yi17=wine bottle yis=wine bottle Y19=wine bottle

Y20=wine bottle

o=stone wall

o =forklift

,=pay-phone g=street sign

,=street si
(

o=street sign
q

Yyio=street sign yu=street sign yi2=street sign yi3=street sign yia=street sign yis=street sign Yieg=street sign yi7=street sign yis=street sign

acket =icecream =icecream =dial phone =dial phone ;=dial phone ial phone

Yio=dial phone yi=dial phone y12=dial phone yiz=dial phone Yyis=dial phone yis=dial phone

y16=packet

yi7=packet yis=packet Yio=light Yao=packet

igsaw puzzle saw puzzle igsaw puzzle

igsaw puzzle

igsaw puzzle =cab =soup bow| =board =dial phone saw puzzle =jigsaw puzzle

Yio=jigsaw yu=jigsaw puzzle
puzzle

Yyi2=jigsaw puzzle y,3=jigsaw puzzle

Yyisa=jigsaw puzzle

puzzle

puzzle Ya0=jigsaw
puzzle

yis=jigsaw puzzle y15=] puzzle yi=jig

Figure 5. Glimpses selected by STAM on example images from the ImageNet dataset and the predicted labels. Complete images are shown
for reference only. Note that STAM does not observe the complete image. Ground truth labels are displayed above complete images.

y=ground

transportation Yo=shopping y1=shopping y2=shopping ys=shopping ya=shopping Yys=shopping Ye=shopping yr= Huppmy Ya= Huppmy
station mall mall

Ye=shopping
mall

mall

HH H==

Y10=shopping y1=shopping Y12=shopping y13=shopping y1a=shopping y1s=shopping y16=shopping y17=shopping Yis=shopping Y19=ground Y20=ground
mall mall mall mall mall mall mall mall mall transportation transportation
station station

y=water treatment y1=factory or y2=factory or ys=factory or ya=factory or ys=factory or ye=factory or y;=factory or ye=factory or

In‘of course Iower‘ant Iower‘ant owerplant owerplant Iowerlant owerplant owerplant owerplant

yio=factory or yn=factory or yi2=factory or yiz=military Yia=military Yis=milif Yis=military yir=military yis=military yie=military
powerplant powerplant powerplant facility facility i facility facility facility facility

yg—factory or
powerplant

Yao=military
facility

itan

Yo=military Y i ys=military ye=military yr=military ys=military Yo=
facilit:

y
‘tower fa t| | 4 =tower H=tower =tower facilit fact| fact| fact| fact‘

ym mmtary yn=military yiz=military Yie=tower y17=tower yi1s=tower yig=tower
facility facility

yiz=tower Yia=tower yis=tower Yao=tower

Yo=recreationa

=surface mine fact‘

Y10=0il or gas y11=oil or gas
facility facility

y1=surface y2=oil or gas ys=oil or gas ya=oil or gas ys=oil or gas ye=oil or gas

yz=oil or gas ys=oil or gas Yo=o0il or gas
mine facility fact‘ fact| facilit: fact‘ facilit:

y12=o0il or gas yi3=surface Yia=surface = = = Yyis=surface Yig=surface
facility mine mine i i mine mine mine

Yao=surface
mine

ya=recreationa ys=recreationa ys=recreationa ys=recreationa

1 =crop field | facility | facilit i i i | facilit: f; o=stadium

I

yn stad\um Y12 recreation yu recreatlon y;a recreation y i =t i y17=stadium Yyig=stadium
al facility al facility al facility al facility

Yio=stadium

Figure 6. Glimpses selected by STAM on example images from the fMoW dataset and the predicted labels. Complete images are shown
for reference only. Note that STAM does not observe the complete image. Ground truth labels are displayed above complete images.

Algorithm 1 Pseudo code for training our Sequential Transformers Attention Model (STAM)

rror

Inputs:
X = complete image X
y = ground truth for X

def process_one_batch(X,y):
STAM collects series of T glimpses from X
Parameters of STAM are updated after each additional glimpse
g = step_one (X)

1_t = initial_random_location() # Initial glimpse should be captured at a random location
g_t = extract_glimpse (X, 1l_t)

g_upto_t = [g_t] # A list of all glimpses

1_upto_t = [1_t] # A list of all glimpse locations

for t in range(T):
Perform step 2
p.g t, p.d t, V_t, pi_of 1 tplusl, 1_tplusl = step_two(g_upto_t, 1l_upto_t)
Extract one additional glimpse and append it to previous glimpses
g_tplusl = extract_glimpse (X, 1_tplusl)
g_upto_t.append(g_tplusl)
1_upto_t.append(1l_tplusl)
Perform step 3
p_tplusl, V_tplusl = step_three(g_upto_t, 1l_upto_t)
Evaluate losses
loss = evaluate_losses(y, 9, p_g_t, p_d_t, V_t, pi_of_1_tplusl, p_tplusl, V_tplusl)
Update model parameters
loss.backward ()
optimizer.step ()

def step_one (X):
Teacher predicts soft pseudo-label from a complete image
with no_grad() :
g = teacher (X)
return g

def step_two(g_upto_t, 1_upto_t):
STAM predicts class distributions, state value, attention policy and next glimpse location

f g t, f.d t, s_t = core(g_upto_t, 1l_upto_t) # Core

p_9g_t, p_d_t = classifiers(f_g_t, f_d_t) # Classifiers

V_t = critic(s_t) # Critic

1_unobserved = find_unobserved_locations (l_upto_t) # Find yet unobserved locations
pi_of_ 1 tplusl, 1_tplusl = actor(s_t, l_unobserved) # Actor

return p_g_t, p_d_t, V_t, pi_of_1_tplusl, 1_tplusl

def step_three(g_upto_tplusl, 1_upto_tplusl):
STAM computes ensemble class distribution and the state value one step ahead
with no_grad() :

f_g_tplusl, f_d_tplusl, s_tplusl = core(g_upto_tplusl, 1_upto_tplusl) # Core
p_g_tplusl, p_d_tplusl = classifiers(f_g_tplusl, f_d_tplusl) # Classifiers
p_tplusl = (p_g_tplusl + p_d_tplusl)/2 # Ensemble
V_tplusl = critic(s_tplusl) # Critic
return p_tplusl, V_tplusl
def evaluate_losses(y, 9, p_g_t, p_d t, V_t, pi_of_1 tplusl, p_tplusl, V_tplusl):
Evaluate losses
L_sup = cross_entropy(p_g_t, Vy) # Supervised classification loss
L_consist = kl_div(p_d_t, q) # Consistency loss
R_tplusl = - kl_div(p_tplusl, q) # Reward
L_critic = 11_loss(V_t, R_tplusl + V_tplusl) # Critic loss
IL_actor = pi_of_1_tplusl » (V_t-(R_tplusl + V_tplusl)) .detach() # Actor loss
L_final = (L_sup + L_consist)/2 + L_critic + L_actor # Final loss

return L_final

