
Supplementary Material: Consistency driven Sequential Transformers
Attention Model for Partially Observable Scenes

Samrudhdhi B. Rangreja, Chetan L. Srinidhib, James J. Clarka

aMcGill University, Canada. bSunnybrook Research Institute, University of Toronto, Canada.
samrudhdhi.rangrej@mail.mcgill.ca, chetan.srinidhi@utoronto.ca, james.clark1@mcgill.ca

We organize the supplementary material as follows. We
include additional results in Section 1, additional visualiza-
tion in Figure 5-6, and a pseudo code for training our STAM
in Algorithm 1.

1. Additional Results
1.1. Analysis of Consistency Loss with Baseline At-

tention Policies

In the main paper, we analyzed the gain in accuracy of
STAM when the proposed consistency loss (Equation 3 in
the main paper) is included in the training objectives. Here,
we analyze the same for the agents with baseline attention
policies, namely, the Random, the Plus, and the Spiral. We
train baseline agents with and without the proposed consis-
tency objective and plot the difference in their accuracy in
Figure 1. We observe that the consistency training objective
yields a positive gain in the accuracy for all baseline agents.

Furthermore, the gain achieved with learned policy (i.e.,
STAM) is higher than the heuristics-based baseline policies.
The gain in accuracy is highest for STAM as it learns to
attend to the most discriminative glimpses early in time.
These results align with the recent findings showing that
minimizing the distance between the predictions made from
two views of the same image improves model performance
the most when the views optimally share the task-specific
information [1].

1.2. Effect of Glimpse Size

We compare the performance of our agents with
glimpses of sizes 32 × 32, 48 × 48, and 64 × 64. To ex-
tract the non-overlapping glimpses, we resize the image to
224× 224, 240× 240, and 256× 256 for the three glimpse
sizes stated above, respectively.

For the image-size 224×224, we use the teacher models
as discussed in the main paper. To train teacher models for
images of sizes 240 × 240 and 256 × 256, we finetune the
pretrained DeiT1 on images of respective sizes, following

1https://github.com/facebookresearch/deit

0 2 4 6 8 10 12 14 16 18 20
Time t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ai

n
in

A
cc

ur
ac

y
(%

)

Random

Plus

Spiral

STAM (Ours)

(a)

0 2 4 6 8 10 12 14 16 18 20
Time t

0

2

4

6

8

G
ai

n
in

A
cc

ur
ac

y
(%

)

Random

Plus

Spiral

STAM (Ours)

(b)

Figure 1. Comparison of gain in accuracy of various baseline
agents with inclusion of consistency loss in their training objec-
tives. (a) ImageNet; (b) fMoW. Results for the Random and STAM
are presented as mean ± std computed across ten independent
runs.

0 10 20 30 40 50
Area observed in an image (%)

20

40

60

80

A
cc

ur
ac

y
(%

)

64×64

48×48

32×32 (default)

(a)

0 10 20 30 40 50
Area observed in an image (%)

30

40

50

60

70

A
cc

ur
ac

y
(%

)

64×64

48×48

32×32 (default)

(b)

Figure 2. Accuracy of STAM with different glimpse sizes pre-
sented as a function of % area observed in an image (a) ImageNet;
(b) fMoW. The results are presented as mean±5×std computed
across ten independent runs.

the procedure suggested by Touvron et al. [2]. We train all
agents following the same experimental setup discussed in
the main paper, except for the following. We train the agents
for image sizes 240× 240 and 256× 256 using batch sizes
of 2000 and 1600, and they observe a maximum of 16 and

0 2 4 6 8 10 12 14 16 18 20
Time t

20

40

60

80

A
cc

ur
ac

y
(%

)

Tiny

Small (default)

Base

Figure 3. Accuracy of STAM with core of different capacity. We
compare DeiTD-Tiny, DeiTD-Small, DeiTD-Base architectures
for the core module. The results are presented as mean±5×std
computed across ten independent runs.

7 glimpses per image.
As the glimpse and the image sizes are different, we

compare the accuracy of the three agents as a function of the
area observed in the image (see Figure 2). Initially, when an
area observed in an image is less than 20%, the agent with
smaller glimpses achieves higher accuracy than the agent
with larger glimpses. The reason is that the agent explores
more regions using smaller glimpses than the larger ones
while sensing the same amount of area. Once the agents
have observed sufficient informative regions (nearly 20%
of the total image area), their performance converges. We
use glimpse size 32× 32 with image size 224× 224 as our
default setting.

1.3. Effect of Model Capacity

To study the effect of model capacity on the per-
formance, we compare DeiTD-Tiny, DeiTD-Small, and
DeiTD-Base architectures as the core of our agent. The
three agents are trained using the same procedure as dis-
cussed in the main paper expect for the following. We train
agent with DeiTD-Base core using batch size of 512. We
use pretrained DeiTDof respective capacity as the teacher
model. Results for ImageNet are presented in Figure 3. We
observe increasing accuracy with increasing model capac-
ity. However, training an agent with DeiTD-Base is compu-
tationally expensive. To achieve a good trade-off between
efficiency and accuracy, we use DeiTD-Small as a default
architecture for our agent.

0 2 4 6 8 10 12 14 16 18 20
Time t

20

40

60

80

A
cc

ur
ac

y
(%

)

400 epochs

200 epochs (default)

3 4 5
50.0

52.5

55.0

57.5

60.0

Figure 4. Accuracy of STAM on ImageNet when trained for 200
and 400 epochs. The results are presented as mean±5×std com-
puted across ten independent runs.

1.4. Longer Training on ImageNet

We demonstrate that longer training improves the perfor-
mance of STAM on ImageNet. We compare performance of
STAM trained for 200 and 400 epochs in Figure 4. When
STAM is allowed to observe only five glimpses, longer
training yields 1.15% improvement in the accuracy. In con-
trast, we observe overfitting and reduced performance with
longer training on fMoW.

References
[1] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,

Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In Advances in Neural In-
formation Processing Systems, volume 33, pages 6827–6839,
2020. 1

[2] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In International Conference on Machine Learning, pages
10347–10357, 2021. 1

Figure 5. Glimpses selected by STAM on example images from the ImageNet dataset and the predicted labels. Complete images are shown
for reference only. Note that STAM does not observe the complete image. Ground truth labels are displayed above complete images.

Figure 6. Glimpses selected by STAM on example images from the fMoW dataset and the predicted labels. Complete images are shown
for reference only. Note that STAM does not observe the complete image. Ground truth labels are displayed above complete images.

Algorithm 1 Pseudo code for training our Sequential Transformers Attention Model (STAM)

’’’
Inputs:

X = complete image X
y = ground truth for X

’’’
def process_one_batch(X,y):

STAM collects series of T glimpses from X
Parameters of STAM are updated after each additional glimpse
q = step_one(X)
l_t = initial_random_location() # Initial glimpse should be captured at a random location
g_t = extract_glimpse(X, l_t)
g_upto_t = [g_t] # A list of all glimpses
l_upto_t = [l_t] # A list of all glimpse locations
for t in range(T):

Perform step 2
p_g_t, p_d_t, V_t, pi_of_l_tplus1, l_tplus1 = step_two(g_upto_t, l_upto_t)
Extract one additional glimpse and append it to previous glimpses
g_tplus1 = extract_glimpse(X, l_tplus1)
g_upto_t.append(g_tplus1)
l_upto_t.append(l_tplus1)
Perform step 3
p_tplus1, V_tplus1 = step_three(g_upto_t, l_upto_t)
Evaluate losses
loss = evaluate_losses(y, q, p_g_t, p_d_t, V_t, pi_of_l_tplus1, p_tplus1, V_tplus1)
Update model parameters
loss.backward()
optimizer.step()

def step_one(X):
Teacher predicts soft pseudo-label from a complete image
with no_grad():

q = teacher(X)
return q

def step_two(g_upto_t, l_upto_t):
STAM predicts class distributions, state value, attention policy and next glimpse location
f_g_t, f_d_t, s_t = core(g_upto_t, l_upto_t) # Core
p_g_t, p_d_t = classifiers(f_g_t, f_d_t) # Classifiers
V_t = critic(s_t) # Critic
l_unobserved = find_unobserved_locations(l_upto_t) # Find yet unobserved locations
pi_of_l_tplus1, l_tplus1 = actor(s_t, l_unobserved) # Actor
return p_g_t, p_d_t, V_t, pi_of_l_tplus1, l_tplus1

def step_three(g_upto_tplus1, l_upto_tplus1):
STAM computes ensemble class distribution and the state value one step ahead
with no_grad():

f_g_tplus1, f_d_tplus1, s_tplus1 = core(g_upto_tplus1, l_upto_tplus1) # Core
p_g_tplus1, p_d_tplus1 = classifiers(f_g_tplus1, f_d_tplus1) # Classifiers
p_tplus1 = (p_g_tplus1 + p_d_tplus1)/2 # Ensemble
V_tplus1 = critic(s_tplus1) # Critic

return p_tplus1, V_tplus1

def evaluate_losses(y, q, p_g_t, p_d_t, V_t, pi_of_l_tplus1, p_tplus1, V_tplus1):
Evaluate losses
L_sup = cross_entropy(p_g_t, y) # Supervised classification loss
L_consist = kl_div(p_d_t, q) # Consistency loss
R_tplus1 = - kl_div(p_tplus1, q) # Reward
L_critic = l1_loss(V_t, R_tplus1 + V_tplus1) # Critic loss
L_actor = pi_of_l_tplus1 * (V_t-(R_tplus1 + V_tplus1)).detach() # Actor loss
L_final = (L_sup + L_consist)/2 + L_critic + L_actor # Final loss
return L_final

