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Supplementary Material

A. Qualitative Results – Figures 11, 12

We provide additional qualitative comparisons with π-
GAN [9] in Figures 11 and 12, which show novel views at
high angles and high resolution renders, respectively.

Please also see the project website (https://
lolnerf.github.io) for animations which demon-
strate the high-quality 3D structure and novel views that
our method produces.

B. Camera Fitting Procedure

For a class-specific landmarker which provides estimates
for M 2D landmarks ` ∈ RM×2, we estimate the extrinsics
T and (optionally) intrinsics K of a camera which mini-
mizes the reprojection error between ` and a set of canonical
3D positions p ∈ RM×3. We achieve this by solving the
following least-squares optimization:

argmin
T,K

||`− P (p|T,K)||2 (10)

where P (x|T,K) represents the projection operation for a
world-space position vector x into image space. We per-
form this optimization using the Levenberg–Marquardt al-
gorithm [33]. The canonical positions p may be either man-
ually specified or derived from data. For human faces we
use a predetermined set of positions which correspond to the
known average geometry of the human face. For AFHQ, we
perform a version of the above optimization jointly across
all images where p is also a free variable, and constrained
only to obey symmetry.

In our experiments we predict camera intrinsics for hu-
man face data, but use fixed intrinsics for AFHQ where the
landmarks are less effective in constraining the focal length.
For SRN cars, we use the camera intrinsics and extrinsics
provided with the dataset, though we note that semantically
consistent landmarkers do exist for this class of data [63].

0◦ 30◦ 60◦ 0◦ 30◦ 60◦

LOLNeRF π-GAN
Figure 11. High view angles – both methods show degraded qual-
ity at high angles, but ours maintains better sharpness and view-
consistency.

Method FID↓ KID↓ IS↑

HoloGAN [46] 39.7 2.91 1.89
GRAF [58] 41.1 2.29 2.34
π-GAN [9] 14.7 0.39 2.62
Ours 128.2 0.11 2.34

Table 5. Unconditional Sampling Quality – Perceptual image
distribution quality metrics on CelebA for our model and baselines.
The results for HoloGAN and GRAF are taken from [9].

C. Dataset Size Ablation – Figure 13

To quantify our method’s dependence on large amounts
of data, we perform an ablation study in which we train
models with subsets of the full dataset. We then show the
novel view synthesis quality from these networks as a way
of determining how well they have generalized to recon-
structing different views. The results of this experiment
are shown in Figure 13. We find a clear trade-off in qual-
ity of the training image reconstruction and quality of the
learned 3D structure as the dataset size increases. Very small
datasets reconstruct their training images with high accuracy,
but produce completely unreasonable geometry and novel
views. As the number of training images increases, the ac-
curacy of reconstruction slowly decreases, but the predicted
structure generalizes to become much more consistent and
geometrically reasonable.

D. Unconditional Sampling – Figure 14

To evaluate the quality of unconditional samples gener-
ated by our PCA-based sampling method, we compute three
standard quality metrics for generative image models on
these renders: Frechet Inception Distace (FID) [24], Kernel
Inception Distance, (KID) [4], and Inception Score (IS) [56],
the results of which are shown in Table 5. We find that
our method achieves an inception score competitive with
other 3D-aware GAN methods, indicating that we are able
to model a variety of facial appearances. Our result for the
distribution distance metrics, FID and KID, however, show
opposing results with our method doing far worse in FID but
better in KID. The reason for this is not entirely clear, but
FID has been shown to be sensitive to noise [7], and details
in the peripheral areas of our generated images show more
noise-like artifacts than π-GAN [9]. Regardless, we do not
necessarily expect to outperform π-GAN [9] for these met-
rics as it is trained to produce images with high perceptual
quality as determined by a CNN, which is a better proxy for
these distribution metrics than our reconstruction loss.

https://lolnerf.github.io
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Figure 12. High resolution renders – Our method is trained natively to reconstruct high resolution images and can reconstruct sharp details,
while π-GAN [9] reconstructions lack detail beyond its training resolution and contain artifacts that become easily visible.
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Figure 13. Dataset size ablation – we show the behaviour of
the method as the size of the training dataset varies. Rows 1, 3,
and 5 show the learned reconstruction of training images from the
predicted view for that image. Rows 2, 4, and 6 show the models
rendered from a novel view. The columns show the results as
the total number of training images is increased from ten to ten
thousand. Note that this ablation is performed with lower-capacity
networks (256 neurons per layer), both to avoid wasting energy
in training and to more clearly show how reconstruction quality
changes with dataset size.

E. Architecture Details

Our architecture uses a standard NeRF backbone archi-
tecture as described in [44] with a few modifications. In
addition to the standard positional encoding we condition
the network on an additional latent code by concatenating
it alongside the positional encoding. For SRN cars and
AFHQ we use the standard 256 neuron network width and
256-dimensional latents for this network, but we increase
to 1024 neurons and 2048-dimensional latents for our high-
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Figure 14. Unconditional generation – Both methods produce
samples that resemble the training distribution in appearance and
shape. Ours produce sharper details in the central face region
where the data is more consistent, while π-GAN [9] produces more
plausible hair and backgrounds due to its adversarial training.

resolution CelebA-HQ and FFHQ models. For our back-
ground model we use a 5-layer, 256-neuron relu MLP in
all cases. During training, we use 128 samples per ray for
volume rendering with no hierarchical sampling.

F. Training Details
We train each model for 500k iterations using a batch

size of 32 pixels per image, with a total of 4096 images
included in each batch. For comparison, with 2562 images,
this compute budget would allow just 2 images per batch for
a GAN-based method which renders entire frames.

We train with an ADAM [31] optimizer using exponential
decay for the learning rate from 5× 10−4 to 1× 10−4. We
run each training job using 64 v4 Tensor Processing Unit
chips, taking approximately 36 hours to complete for our
high resolution models.


