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1. Details of the RADIal dataset
Sensor specifications. Central to the proposed RA-
DIal dataset, our high-definition radar is composed of
NRx = 16 receiving antennas and NTx = 12 transmitting
antennas, leading to NRx·NTx = 192 virtual antennas. This
virtual-antenna array enables reaching a high azimuth an-
gular resolution while estimating objects’ elevation angles
as well. As the radar signal is difficult to interpret by anno-
tators and practitioners alike, a 16-layer automotive-grade
laser scanner (LiDAR) and a 5 Mpix RGB camera are also
provided. The camera is placed below the interior mir-
ror behind the windshield while the radar and the LiDAR
are installed in the middle of the front ventilation grid, one
above the other. The three sensors have parallel horizontal
lines of sight, pointing in the driving direction. Their extrin-
sic parameters are provided together with the dataset. RA-
DIal also offers synchronized GPS and CAN traces which
give access to the geo-referenced position of the vehicle as
well as its driving information such as speed, steering wheel
angle and yaw rate. The sensors’ specifications are detailed
in Table 1.
RADIal dataset. RADIal contains 91 sequences of 1 to 4
minutes in duration, for a total of 2 hours. These sequences
are categorized in highway, country-side and city driving.
The distribution of the sequences is indicated in Figure 1.
Each sequence contains raw sensor signals recorded with
their native frame rate. A Python library is provided to read
and synchronize the data together. There are approximately
25,000 frames with the three sensors synchronized, out of
which 8,252 are labelled with a total of 9,550 vehicles.

2. Ablation study of the MIMO pre-encoder
The role of the MIMO pre-encoder is to de-interleave the

range-Doppler spectrums and to transform them into a rep-
resentation that is compact and still allows, through learn-
ing, the prediction of azimuth angles along with other infor-
mation on reflectors. The input of the MIMO pre-encoder
is composed of the NRx = 16 range-Doppler spectrums in
complex numbers, one for each Rx. The real and imag-
inary parts are stacked, yielding an input tensor of total

Figure 1. Scene-type proportions in RADIal. The dataset con-
tains 91 sequences in total, captured on city streets, highway or
country-side roads, for a total of 25k synchronized frames (dark
colors), out of which 8,252 are labelled (light colors).
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n Range 0.2 m 0.1 m
Azimuth 0.1◦ 0.125-0.25◦ 2592 px
Elevation 1◦ 0.6◦ 1944 px
Velocity 0.1m·s−1 – –

Frame rate 5 fps 25 fps 30 fps
Height above ground 80 cm 42 cm 145 cm

Table 1. Specification of the RADIal’s sensor suite. The main
characteristics of the HD radar, the LiDAR and the camera are
reported. Their synchronized signals are complemented by GPS
and CAN information.

size BR×BD×2NRx, i.e., 512×256×32. The ablation study
consists in evaluating the performance of FFT-RadNet’s de-
tection head while reducing the number of feature chan-
nels that the MIMO pre-encoder outputs. The maximum
number of output channels is the number of virtual anten-
nas with a complex signal (real and imaginary parts), i.e.,
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Figure 2. MIMO pre-encoder ablation. Influence of the number
of output channels of the pre-encoder on the memory footprint and
the performance of the detection head.

NTx·2·NRx = 384. We vary the number of output channels
from a minimum of 24 to this maximum value and com-
pute the detection performance on the validation set. The
results of this ablation study are reported in Figure 2. We
measure the detection performance with the F1-score, clas-
sically defined as F1-score = AP·AR

AP+AR , which aggregates in a
single metric both the Average Precision (AP) and the Av-
erage Recall (AR). We observe that the best performance is
reached with 192 output channels, hence half of the max-
imum output size. This compressed output is the one that
captures at best the range and azimuth information from the
inputs range-Doppler spectrums toward the detection and
segmentation tasks.

3. Radar versus LiDAR
RADIal dataset was designed to collect information from

several sensor technologies. For safety-critical systems,
such as self-driving vehicles, we believe that redundancy
at various levels of the system, starting at the sensing layer,
is key to guarantee safe operations. In a complete auto-
mated driving system, the combination of radars together
with cameras and LiDARs will improve the overall robust-
ness. Indeed, LiDARs provide, even at night, accurate 3D
localization of objects in distance and angle, while cameras
give access to a wealth of semantic and geometric informa-

tion about the scene when light is sufficient. However, these
two types of sensors suffer from bad weather conditions that
can degrade quite significantly their performances. Radars
are more robust to adverse weather conditions, provide ac-
curate distance estimates together with the velocity of the
objects, and are especially well suited to the cost and size
constraints of automotive applications.

For reference, we report in Table 2 the performance on
RADIal obtained by the imaging radar (with FFT-RadNet)
and by the LiDAR sensor (with Pixor), respectively. The
former obtains similar performances in AP and lower,
though still good, performances in AR compared to the lat-
ter. This is already a remarkable result, owing to the practi-
cal advantages of the radar technology, which we reminded
above. In addition, this difference of performances might
be explained by the way RADIal dataset was created. The
ground truth is obtained semi-automatically based on 2D
detection/segmentation from the camera fused with the 3D
information of LiDAR. The evaluation might thus be favor-
ably biased toward processing LiDAR inputs.

Sensor Model AP(%) ↑ AR(%) ↑
LiDAR Pixor 98.55 90.42
Radar FFT-RadNet 96.84 82.18

Table 2. Vehicle detection with HD radar alone and LiDAR
alone. Performance in average precision (AP) and average re-
call (AR) on RADIal Test split. FFT-RadNet takes range-Doppler
spectrum as input, and Pixor the LiDAR point cloud.

Due to the nature of the annotation pipeline, and to the
radar multi-path reflections, many sequences of complex
scenes in urban or dense environments, which are present in
RADIal, were not annotated. In Figure 3, we qualitatively
compare vehicle detection in such complex scenes when us-
ing either the HD radar modality or the LiDAR one. We
observe that the HR radar, equipped with FFT-RadNet, de-
tects vehicles in complex situations, including beyond the
first row of vehicles where neither the camera nor the Li-
DAR performs well.
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Figure 3. Examples of vehicle detection in complex scenes using either HD radar or LiDAR. Comparison between Pixor trained
with LiDAR point clouds (‘PIXOR LiDAR’ columns, green boxes) and our proposed FFT-RadNet requiring only range-Doppler as input
(‘FFT-RadNet’, red boxes). Note that radar detections are not limited to the first row of vehicles but can see up to the second one. Also,
FFT-RadNet provides vehicles’ relative speed through Doppler measurements.


