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1. Dataset Details:

WALT Dataset:We use [3] to detect faces in the images.
We blur the detected faces to anonymous the people. We
have captured the data from each camera for nearly an year.
The cameras are located in multiple cities spanning differ-
ent continents to generalize well to different situations. The
dataset has not been included with the submission because
of the size of the dataset. Similarly code as well is spe-
cific to the dataset and cannot be included as standalone
code cannot be run without the dataset. We add multiple
videos to showcase the dataset in the website and show re-
sults on different sequences to emphasis the advantage of
our algorithm. We will be making the dataset and code to
automatically capture and retrain networks public with the
camera ready submission. We observe that the accuracy of
segmentation is slightly lower when trained on blurred faces
compared to non-blurred faces.
Clip Art WALT Dataset(CWALT):We generate 10000 im-
ages per camera for training and 1000 images for testing
across all 10 cameras. Different layers of occlusions are
captured using different labels. Further we can generate
different representations using this methodology like key-
points, segmentation, 3D reconstuctions etc.
Rendered WALT Dataset(RWALT):The computer
graphic dataset is used to cross verify our method choices
and compute ablation analysis on different segments of the
algorithm.
KINS and COCOA: These datasets are manually anno-
tated for the task of amodal segmentation. KINS dataset [6]
was built on top of KITTI Dataset [1] with amodal anno-
tations of 14991 images with 7,474 training and 7517 test-
ing images. The dataset is more oriented for the task of
autonomous driving tasks. COCOA Dataset contains 3823
images with 1500 training and 1323 testing samples from
images from crowd-sourcing. We used these datasets to pre-
train the models used for comparision. We did not evaluate
the method on these datasets because of the human labels
used to evaluate. Clearly our self-Supervision is superior to
the human annotated methods. This has even been cross
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Figure 1. We Compare the time taken to train the network with
the new strategy(bottom) vs naive sampling of unoccluded ob-
jects(top). Clearly the time taken for convergence of the accuracy
is longer using the naive strategy compared to our tracking based
approach.

validated using [7]. Since our framework is a continous
framework, we outperform [7].

2. Implementation Details:

Network Architecture: We use the mmdetection [2] based
code base to train the network. The backbone [5] has been
ported from [2]. All the materials and code used in the sub-
mission belong to MIT License. We replicate the Maskrcnn
Head for each of the proposed heads .i.e Occluder Head,
Occluded Head and Amodal Object Head. From the ROI
we compute feature maps of 3 layers i.e. first layer is
14× 14× 256, second layer is 14× 14× 256, third layer is
28×28×256. Finally we do a softmax to produce the mask
heatmap of 28× 28× c, where c is the number of classes.
Training Details: We train the network using 4 A100 GPUs
with a batch size of 11 for 12 epochs for all the trained mod-
els in the paper. We used 0.001 learning rate to train the net-
work. We generate the Clip-art automatically while training
and are extensively dependent on the CPU computation for
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superimposing the objects and generating ground-truth.
Occluded Layer: Every amodal bounding box has three
components i.e. the object we want to detect (amodal ob-
ject), object occluding the amodal object (occluder), back-
ground or object occluded (occluded). Previous methods
like BCNet[30] have not been supervised for the occluded
objects making it difficult to distinguish amodal object from
occluded object, when multiple objects lie in the bound-
ing box. Our additional supervision of the occluded ob-
jects helps distinguish these objects and improve accuracy
as shown in Tab. 1(in paper).

Comparison to Human Annotated Datasets: We reit-
erate that human annotations, especially for strong occlu-
sions, are imprecise to learn amodal representations. Com-
pared to human annotated datasets i.e. KINS or COCOA,
our stationary object (SWALT) based evaluation method-
ology produces more accurate ground truth. Further, our
SWALT methodology generates much larger test sets com-
pared to any existing human annotated datasets (60K im-
ages from WALT dataset compared to 6157 images in KINS
dataset) and will grow 100x as data is captured from more
cameras in the following years. Scaling human annota-
tions on such expanding datasets is costly and infeasible and
our self-supervision based methodology automatically gen-
erates accurate and large training and testing datasets for
amodal evaluation.
Composite images and Depth: We composite unoccluded
objects in their original positions so their perspectives are
correct. We generate training images using random overlap
between composited objects that could cause physical inter-
action in real world. This strategy does not effect the testing
accuracy with real world occlusions (SWALT) as they are a
subset of the composite distribution in CWALT. Further re-
search in compositing using depth can speed up training by
reducing unrealistic occlusions in CWALT.
Comparison With SOTA: We use three baselines -
MaskRCNN [5], ASN [6], BCNet [4] - to compare our
amodal predictions. All methods were trained by com-
bining the KINS [6], COCOA [8] and Synthetic Occlu-
sion [4] datasets using the same backbone [5]. Our model
is trained using Clip Art WALT Dataset. Here KINS and
COCOA are hand-annotated amodal segmentation datasets.
We evaluate the only vehicle and people segmentation in
all the datasets. MaskRCNN is trained only on the visible
segmentation from the above-specified dataset. Since our
method uses ground truth from longitudinal supervision of
unlabeled data, we cannot use hand-annotated datasets like
KINS and COCOA to compare the accuracy of the method.
We use the stationary object-based metric to evaluate the
accuracy of the predicted amodal representation from the
above methods. Tab 1 shows 12% improvement in the
amodal prediction compared to BCNet for amodal segmen-
tation and 6.3 % improvement for amodal bounding box de-

Method Amodal Box(IOU) Amodal Seg(IOU)
γ = 0.01 γ = 0.5 γ = 0.01 γ = 0.5

MaskRCNN [5] 76.23 68.62 55.44 37.29
ASN [6] 82.72 79.38 79.45 76.91
BCNet [4] 86.47 82.23 82.79 77.44
WALT-Net 91.9 91.71 92.19 91.70

Table 1. We compare accuracy of amodal segmentation on station-
ary object WALT Dataset with respect to other SOTA. We observe
12% improvement in amodal segmentation compared to BCNet
and 6.3 % improvement for amodal bounding box detection.

tection on the stationary object WALT Dataset. This clearly
shows that longitudinal supervision outperforms both super-
vised, synthetic COCO-based methods in predicting occlu-
sions in the real world. Observe that our method consis-
tently outperforms other baselines in predicting the amodal
segmentation in severe occlusions.
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