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In this Supplementary Material, we first present addi-
tional results to verify the robustness of our model (Ap-
pendix A). Then, we verify the applicability of our locality
attack and AAR on another popular deep GM baseline (Ap-
pendix B), followed by our further analysis of the advantage
of our locality attack as a data augmentation technique (Ap-
pendix C). We also delve into analyzing the vulnerability of
deep GM when attacks target on different parts of feature
space (Appendix D). Finally, we give time complexity anal-
ysis (Appendix E), more visual results about our adversar-
ial attack and defense (Appendix F) and the implementation
details (Appendix G).

Table 1. Robust accuracy (%) of (non-)robust models. W-B means
white-box attack with B-B as black-box attack. For B-B, MI-
FGSM is transfer-based with NGMv2 as the surrogate model.

Attackers
Defenders PCA CIE NGMv2

Baseline Baseline Baseline Pixel AT ASAR-GM
C&W-20 (W-B) 3.72 3.27 2.31 70.72 70.79
PGD-20 (W-B) 9.8 9.77 24.37 70.5 70.58
PGD-50 (W-B) 8.76 9.18 23.94 70.5 70.58

combo-50 (W-B) 7.99 8.16 21.46 54.09 69.6
MI-FGSM (B-B) 35.89 27.25 - 71.33 73.23

A. More results about White-box and Black-
box Attacks

To verify that our robust model does not suffer from in-
complete evaluations, we follow the series of sanity checks
introduced in [2] and present more results about white-box
and black-box attacks, which are in line with the conclu-
sions in our paper. For white-box attacks, we perform PGD
attack with multiple steps, e.g., PGD-20, PGD-50 and also
the targeted C&W attack [3]. Note that except the number
of attack steps, the white-box setting is the same as reported
in our paper. For black-box attacks, we choose another
powerful attack: the transfer-based MI-FGSM attack [4] to
evaluate robustness. Table 1 shows that under stronger PGD
attack, e.g., PGD-50 and combo-50 that represents PGD-50
combo attack, our model consistently exhibits the best ro-

bustness, whose accuracy converges with the increasing of
attack steps. Moreover, results under MI-FGSM attack also
verify that our robust model achieves true robustness with-
out causing obfuscated gradients [1], since MI-FGSM does
not exploit gradient information of our model.

B. Applicability of Locality Attack and AAR
To verify the applicability, we select another popular

deep GM baseline, PCA-GM [5]). Table 2 shows our AAR
achieves both better clean accuracy and robustness over
Pixel AT. Moreover, our locality attack boosts the accuracy
of PCA-GM on clean examples, being also consistent with
our conclusion.

Table 2. Clean and Robust accuracy(%) of (non-)robust PCA-GM

Defenders
Attackers pixel locality combo

Clean PGD-20 PGD-20 PGD-20
PCA-GM(baseline) 64.78 14.04 31.47 12.56

Pixel ATFGSM 54.45 54.15 36.73 36.48
Locality AT(ours) 66.17 46.18 51.1 38.13

AAR(ours) 60.85 56.77 46.10 44.20

C. Generalization Analysis of ASAR-GM
In our paper, we claim that our defense mechanism can

act as a data augmentation technique to achieve better clean
accuracy on the test dataset, since our perturbations on key-
point locality induce various graph structures. To verify the
advantage of our locality attack, we train baseline model
with random locality noise. As introduced in Table 5 in
our paper, we devise three types of locality attack: “lo-
cation” (only perturb keypoint locations with the original
graph structure), “structure” (only reconstruct graph struc-
ture with location of keypoints unchanged), and “both”
(perturb keypoint location and graph structure together).
We generate random noise for the three kinds of local-
ity attack respectively and train the baseline model. The
clean accuracy of the three models is 70.91% (random noise
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Figure 1. Visualization of the matching results of the baseline NGMv2 and our robust model under our adversarial attack. Our model
exhibits superior robustness on Pascal VOC dataset. One image pair is randomly sampled and visualized for each of the 10 classes.

Table 3. Test accuracy (%) of (non-)robust NGMv2 for vulnera-
bility analysis. Robustness is tested in different cases where only
one/both of node and edge similarity matrices is/are perturbed.

Defenders
Attackers Attack Scale pixel attack locality attack combo attack

FGSM FGSM FGSM

NGMv2

clean 80.4 - -
only nodes 56.1 70.9 55.43
only edges 40.39 69.49 37.4

both 36.97 64.47 33.51

ASAR-GM(config 1)

clean 81.14 - -
only nodes 78.73 77.12 75.48
only edges 73.84 75.52 69.61

both 73.50 73.43 67.42

on “location”), 79.02% (random noise on “structure”), and
80.43% (random noise on “both”), which reveals that ran-
dom noise on locality during training even harms model
generalization ability while our adversarial perturbation on
locality helps our model generalize better on the clean test
dataset.

D. Vulnerability Analysis of Deep GM

As introduced in Sec. 3.1 in the main paper, deep
graph matching establishes node-to-node correspondences
between two graphs through learning node-to-node and
edge-to-edge affinity, i.e., learning node similarity matrix
and edge similarity matrix. As shown in Table 3, we fur-
ther analyze the vulnerability of deep graph matching at
node and edge level by attacking the (node) edge similar-
ity matrix while the (edge) node similarity matrix remains
unchanged, i.e., one similarity matrix gets inferenced via
adversarial inputs while the other one is obtained via clean
inputs. For NGMv2 and its robust model, we find that the
learned edge affinity is more vulnerable than node affinity
when being attacked. It is probably because that attacks on
the edge affinity have a greater impact on graph neural net-
work (GNN), which has been utilized to learn the affinity
during the whole pipeline of deep graph matching.

E. Time Complexity Analysis

Our defense (config 1 and config 2) only need one ex-
tra gradient backward propagation per mini-batch to finish
two parts: i) Calculating our appearance aware regulariza-
tion loss. ii) Crafting our adversarial examples. Compared
to the common PGD-n AT setting with loss backward n
more times, our defense achieves better clean accuracy and
robustness with a lower time computation cost.

F. More Visual Results on Attack and Defense

The Pascal VOC dataset contains 20 classes in total and
in our paper, we select 10 of them to visualize. We also
visualize the other 10 classes in Fig. 1, which demonstrates
the effectiveness of our attack and defense mechanism on
the whole dataset.

G. Implementation Details

Attack. We generate our adversarial examples within the
bounded ℓ∞-norm ball. For pixel attack, we set the pertur-
bation budget ϵc as 8/255 while for locality attack, ϵz is set
as 8 (the image size is 256×256). For each iteration during
PGD attack in Eq. 3 in our paper, we keep the step size α as
2/255 for pixel attack and 2 for locality attack.
Defense. For our appearance aware regularizer (AAR) in
Eq. 10a, we set β as 1.5 across all training examples. In the
maximization step of Eq. 10b, for config 1 & 2, we apply
single step FGSM attack as our attack to generate our ad-
versarial examples while for config 3 we perform stronger
PGD-2 attack for better robustness. All of the other hyper-
parameters of our robust model are in line with the official
setting of NGMv2.
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