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1. Proofs and Derivations

1.1. Proof for Theorem 1

By Bayes Rule, we have:

ptrain(y|x) = p(x|y) · ptrain(y)/ptrain(x) (1.1)
pbal(y|x) = p(x|y) · pbal(y)/pbal(x) (1.2)

By change of variables, we have:

ptrain(y|x) = pbal(y|x) ·
ptrain(y)

pbal(y)
· pbal(x)

ptrain(x)
(1.3)

The evidence ratio pbal(x)
ptrain(x)

in Eq. 1.3 is unknown. To bypass
the unknown ratio, we use the definition that the integral of
ptrain(y|x) over space Y should be equal to 1. Using the
simple fact, we have:

ptrain(y|x) =
ptrain(y|x)∫

Y
ptrain(y′|x)dy′ . (1.4)

Bring Eq. 1.3 into Eq. 1.4, we have:

ptrain(y|x) =
pbal(y|x) · ptrain(y)

pbal(y)
· pbal(x)
ptrain(x)∫

Y
pbal(y′|x) · ptrain(y′)

pbal(y′) · pbal(x)
ptrain(x)

dy′
(1.5)

=
pbal(y|x) · ptrain(y)

pbal(y)∫
Y
pbal(y′|x) · ptrain(y′)

pbal(y′) dy
′

(1.6)

=
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′ (1.7)

1.2. MSE as a Special Case of Balanced MSE

We show that MSE is a special case of Balanced MSE.
When ptrain(y) is uniform on Y ,

log

∫
Y

N (y;ypred, σ
2
noiseI) · ptrain(y)dy

= log

∫
Y

N (y;ypred, σ
2
noiseI) · Cdy

= log

∫
Y

N (y;ypred, σ
2
noiseI)dy + logC

= log 1 + logC = logC,

(1.8)

where C is some constant. Then, the Balanced MSE loss
becomes − logN (y;ypred, σ

2
noiseI)+logC and is equivalent

to the standard MSE loss.

1.3. GAI Loss Derivation

We continue our derivation from Eq 3.11. The integral
of a Gaussian is trivial to solve:

K∑
i=1

ϕiSi

∫
Y

N (y; µ̃i, Σ̃i)dy =

K∑
i=1

ϕiSi (1.9)

Therefore, the closed-form loss of Balanced MSE is:

L = − logN (y;ypred, σ
2
noiseI)

+ log

∫
Y

N (y′;ypred, σ
2
noiseI) · ptrain(y

′)dy′

= − logN (y;ypred, σ
2
noiseI) + log

K∑
i=1

ϕiSi

(1.10)

Recall that Si is the norm of the product of two Gaussians.
Si itself is also a Gaussian:

Si = N (ypred;µi,Σi + σ2
noiseI) (1.11)



Bring Eq. 1.11 back to Eq. 1.10, we have:

L = − logN (ytarget;ypred, σ
2
noiseI)

+ log

K∑
i=1

ϕi · N (ypred;µi,Σi + σ2
noiseI)

(1.12)

2. Implementation Details
2.1. Synthetic Benchmark

2.1.1 Dataset Construction

For the training set, we first randomly sample 1024 labels y
from a predefined label distribution ptrain(y), e.g., a normal
distribution. Then, we minus a random noise ϵ ∼ N (0, I)
from the lables, to obtain the true labels ỹ so that y = ỹ+ϵ.
For an invertible mapping function f : X → Y , e.g., a lin-
ear function, we find its inverse function f−1, and generate
inputs x from the true labels ỹ using f−1. After that, we
have:

y = ỹ + ϵ = f(x) + ϵ (2.1)

To this end, (x,y) is a standard regression dataset and y has
a predefined imbalanced distribution. We call f the oracle
relation and our goal is to estimate f from (x,y).

For the test set, we repeat the above procedure except
that we use a uniform label distribution and do not apply
the random noise.

2.1.2 Training Details

In training, we use a batch size 256. For one-dimensional
linear regression, we train the models for 2K epochs. We
use SGD optimzer with momentum 0.9. We set the learn-
ing rate to 1e-3. For non-linear regressions and two-
dimensional linear regressions, we train the models for 10K
epochs. We use Adam [7] optimizer and set the learning
rate to 0.2.

2.2. IMDB-WIKI-DIR

We follow the RRT setting in [14]. Concretely, we use
ResNet-50 [2] model as the backbone. We train the vanilla
model for 90 epochs using Adam optimizer [7]. We decay
the learning rate from 10-3 by 0.1 at 60-th epoch and 80-th
epoch. We then freeze the backbone, re-initialize and train
the last linear layer. For the retraining, we train the last
linear layer for 30 epochs with a constant learning rate at
10-4. We use a GMM with 2 components.

2.3. NYUD2-DIR

We follow the settings in [14]. We use a ResNet-50-
based encoder-decoder architecture proposed by [3]. We
train the model for 20 epochs using Adam optimizer with

an initial learning rate at 10-4. The learning rate decays by
0.1 every 5 epochs. Only direct supervision on depth is used
in training. We use a GMM with 16 components.

2.4. IHMR

We use a pretrained SPIN [8] model as the feature ex-
tractor, and re-train the linear regressor for 20 epochs.
We follow SPIN to train on the following 3D datasets:
Human3.6M [4], MPI-INF-3DHP [11]; and following 2D
datasets: LSP [6]; LSP-extended [8], MPII [1], COCO [10].
We test on 3DPW [13]. Static fits are used to provide super-
vision on the 2D datasets. We use a constant learning rate
at 10-4. We use a GMM with 16 components.

2.5. Noise Scale Learning

We set σnoise as a learnable variable that requires gradi-
ent, and add it into the optimizer so that σnoise can be op-
timized together with model parameters. There are no ad-
ditional network or architecture modifications for the noise
scale learning.

3. Experiment on random seeds

We compare least square, reweighting, and Balanced
MSE under different random seeds in the one-dimensional
linear regression. A visualization of results is shown in
Fig. 1. We observe that reweighting is sensitive to random
seeds. Reweighting’s performance varies drastically when
random seed changes. This may attribute to the fact that
reweighting signifies rare labels’ noise and the zero mean
noise assumption no longer holds. In comparison, Balanced
MSE is robust to different noise sampling results.

4. Quantitative results for the synthetic bench-
mark

We show the quantitative results for the synthetic bench-
marks. There are three settings in the quantitative results.
Normal: one-dimensional linear regression where the label
distribution is a Normal distribution. Exponential: one-
dimensional linear regression where the label distribution
is an Exponential distribution. MVN: two-dimensional lin-
ear regression where the label distribution is a Multivariate
Normal distribution.

Different extents of distribution skewness are studied as
well. The results show that 1) both GAI and BMC signifi-
cantly outperforms Vanilla (i.e., least square) and Reweight-
ing, particularly when the skewness is high; 2) the numer-
ical implementation BMC shows comparable performance
to the closed-form implementation GAI; 3) using learned
noise scale achieves a comparable performance to using the
true noise scale.
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Figure 1. Synthetic benchmark on random seeds. Although the noise scale keeps the same, reweighting’s performance varies drastically
when different random seeds are used. In comparison, Balanced MSE is robust to different sampled noises.
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Figure 2. IMDB-WIKI-DIR test set visualization. We observe tail labels on both edges of the test distribution. Overall metrics will not
sufficiently assess a model’s performance on senior adults (age >∼75) and children (age <∼15 ).

5. IMDB-WIKI-DIR test set visualization
We visualize the label distribution of IMDB-WIKI-

DIR’s test set in Fig. 2.

6. Ablations
6.1. Effect of the noise scale

We study the effect of σnoise on IMDB-WIKI-DIR, by
fixing σnoise at different values. We use the GAI option for
study. We also compare fixed σnoise (Fix.) with jointly op-
timized σnoise (Joint.). Results are shown in Tab. 2. We ob-
serve that larger σnoise trades the performance towards tail
labels. We also observe that the jointly optimized σnoise is

effective in finding the optimal trade-off point.

6.2. Effect of number of components in GMM

We study the number of components K in GMM on
IMDB-WIKI-DIR using the GAI variant. Results are shown
in Tab. 3. We notice that the performance reaches optimal
when K is larger or equal to 2. This may attribute to the fact
that the training label distribution of IMDB-WIKE-DIR is
relatively simple.

7. Additional Discussions and Analysis
Analysis on the Computational Cost. We compare Bal-
anced MSE with other methods in terms of computational
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Figure 3. Visualization of the training label distribution of IHMR. The horizontal axis is 100 regions uniformly divided on the pose space
according to their geodesic distance to the mean pose.

Table 1. Quantitative results for the synthetic benchmark. †: True noise scale used. For each type of distribution, we evaluate three extents
of skewness: Low, Moderate, and High. Best results are bolded.

Normal (MSE↓) Exponential (MSE↓) MVN (MSE↓)

Method High Mod. Low High Mod. Low High Mod. Low

Vanilla 5.521 3.275 1.936 18.61 13.14 6.038 5.522 3.809 2.570
Reweight 1.399 0.336 0.092 4.676 1.336 0.128 3.310 1.758 1.001

Ours (GAI)† 0.031 0.001 0.001 0.001 0.002 0.004 0.122 0.031 0.011
Ours (BMC)† 0.043 0.004 0.000 0.002 0.000 0.000 0.126 0.033 0.011
Ours (GAI) 0.089 0.008 0.005 0.130 0.082 0.023 0.184 0.021 0.006
Ours (BMC) 0.141 0.060 0.030 0.122 0.104 0.034 0.142 0.025 0.011

Table 2. Ablation on the choice of noise on IMDB-WIKI-DIR.

bMAE↓ MAE↓

Method All Many Med. Few All Many Med. Few

Fix. (σ = 6) 12.85 7.27 13.26 29.79 7.81 7.20 12.78 23.78
Fix. (σ = 7) 12.67 7.52 12.75 28.67 8.00 7.45 12.32 23.25
Fix. (σ = 8) 12.68 7.80 12.61 27.83 8.24 7.73 12.21 22.94
Joint. 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05

Table 3. Ablation on the effect of the number of components K in the GMM.

bMAE↓ MAE↓

Method All Many Med. Few All Many Med. Few

K=1 12.72 7.70 12.94 28.08 8.18 7.63 12.47 23.17
K=2 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05
K=4 12.67 7.62 12.68 28.26 8.09 7.55 12.26 23.03
K=128 12.66 7.61 12.87 28.11 8.09 7.53 12.44 23.18

cost in this section. We show the train-time computational
cost on IMDB-WIKI-DIR in Tab. 4. Results are averaged
on the first epoch. The overhead is negligible compared to
overall cost. There is no additional computational cost dur-
ing inference.
How is Balanced MSE connected to the Bayes-optimal
prediction? We use ypred, the mean of the predicted Gaus-
sian, to infer the final label. Since the mean and the
mode are the same for a Gaussian distribution, it is by

definition that ypred estimated by Balanced MSE is the
Bayes-optimal prediction for a balanced test set: ypred =
argmaxyN (y;ypred, σ

2
noiseI) = argmaxypbal(y|x;θ).

Why model the noisy prediction as an isotropic Gaus-
sian? The isotropic Gaussian noise is assumed by ordinary
least square [5]. More fine-grained noise correlations mod-
eling can lead to better regression performance [5] but is out
of the scope of Balanced MSE.
Will modeling the uncertainty explicitly help imbal-



Table 4. Computational cost comparison.

Time (s/iter) Memory Remark

RRT 0.29 6502MB -
LDS 0.29 6502MB -

GAI 0.30 6502MB K=2
GAI 0.30 6512MB K=512
BMC 0.30 6504MB B=256

anced regression? Balanced MSE estimates a constant
noise and degrades to MSE when no imbalance exists, i.e.,
the gain is from imbalance handling not from uncertainty
modeling. However, sophisticated uncertainty modeling,
e.g., correlated noise [5] and input-dependent noise [9],
could help regression in general.
Can we extend the analysis in Balanced MSE to L1 &
Huber loss? Extending L1 & Huber loss to balanced ver-
sions will be important future works, which can be done via
Theorem 1 by replacing Gaussian in this work to Laplacian
and [12] respectively.
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