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In the supplemental material, we provide

• the details of single-view estimation network in Sec. 1,

• the details of cross-view fusion network in Sec. 2,

• more details of group-wise confidence encoding in
Sec. 3,

• the details of prior loss in Sec. 4,

• more details of training process in Sec. 5,

• the impact of the training data in Sec. 6,

• more qualitative results in Sec. 7.

Note that all the notation and abbreviations here are consis-
tent with the main manuscript.

1. Single-View Estimation Network
Our single-view estimation network adopts a encoder-

decoder structure similar to Hourglass network [8]. The
difference is that we replace the encoder with ResNet-18
[3] to extract more representative global features for hand
model estimation. The target of the decoder is to extract
the 2D feature maps F ∈ R256×32×32, from which we can
obtain the intermediate representations H ∈ R21×32×32,
D ∈ R(21×3)×32×32 and W ∈ R21×32×32. For the two-
stacked network, we adopt the stacking method in [8] to
feed the intermediate representations and visual features of
the first network into the second network to obtain more ac-
curate and robust results.

2. Cross-View Fusion Network
In this section, we outline the details of the cross-view

fusion network. As shown in Fig. 1, we adopt an encoder-
decoder structure to capture multi-scale dependencies be-
tween nodes. In particular, we use the average pooling to
cluster the skeletal nodes, which shows better performance
than the maximum pooling [1, 11] in our experiments. For

graph convolution, in order to enhance the flexibility of
information passing, we learn individual weights between
node pairs in different layers as proposed in SemGCN [13].
Meanwhile, we apply different parameter matrices to per-
form feature transformations of each node feature as pro-
posed by Liu et al. [6], which can learn diverse relational
patterns between different hand joints. Formally, given a
node feature xi ∈ RZ , the graph convolution operation can
be written as:

x
′

i = ReLU(
∑
k∈Ni

Wkxkaik), (1)

where Ni denotes the neighbors of node i including the
node itself; Wk ∈ RZ×Z is a learnable matrix used to
transform output channels of xk; aik represents the learn-
able connection weight between the node i and node k.

3. Group-wise Confidence Encoding

Since we do not supervise the weight map during train-
ing, the weight map tends to be adaptively distributed to
joint-related regions. Therefore, weight maps of different
joints have different distributions. As shown in Fig. 2,
the weight map of the fingertip tends to concentrate in a
small area and presents a 2D Gaussian distribution, while
the weight map of the joint in the middle of the finger tends
to show a stripe distribution along with the finger. Thus,
there is a significant difference in the interval of the max-
imum distribution of each joint. To solve this problem, as
shown in Fig. 3 (a), we divide the joints of different fingers
at the same level into the same group. We concatenate the
coordinate and confidence of the same joint together and
perform feature embedding by grouping-specific FC layers.

4. Prior Loss

The prior loss consists of a shape loss term and a colli-
sion loss term.

Lprior = wshapeLshape + wcollLcoll, (2)
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Figure 1. The structure of the coress-fusion network. Similar to previous work [13], the residual graph convolutional block is built by two
graph convolutions with a residual skip connection. The non-local block [13] is introduced to facilitate global information passing. The
numbers in each module indicate the number of input and output channels respectively.

(a) (b) (c)

Figure 2. (a) Scatter of the relationship between confidence and
mean error. (b) Histogram of the relationship between confidence
and error. Specifically, we first partition the [0, 1] range of confi-
dence into 20 equal bins and then we group the samples into cor-
responding bins according to their confidence. After that we cal-
culate the average error of each bin. (c) Weight map normalized
by softmax.

where wshape and wcoll are constant weights. The shape
loss Lshape constrains the predicted hand shape β as close
as possible to the average shape β̂ =

−→
0 . The shape loss

term is defined as:

Lshape =
∥∥∥β − β̂

∥∥∥2
2
. (3)

The collision loss Lcoll is achieved by placing multiple
spheres in the hand model and penalizing overlaps between
these spheres. Specifically, for the fingers, we trisect each
bone evenly and get ten keypoints for each finger. For the
palm, we quarter each bone evenly and get five keypoints
for each bone. Excluding the repetitive keypoints, there
are 66 keypoints remaining, which serve as centers of the
spheres. We show the sphere centers in Fig. 3 (b). Lcoll

(a) (c)(b)

Figure 3. (a) Joint grouping for confidence encoding. Joints with
the same color belong to the same group. (b) Brown dots represent
joint locations and blue dots denote the sphere centers.

penalizes collisions between the m-th and n-th sphere as
follows:

Lcoll =
∑
m,n

Asphere
m,n max(rm+rn−∥cm − cn∥2 , 0), (4)

where r and c represents the radius and the 3D coordinates
of the sphere, respectively; We adopt Asphere to discard
collisions that do not need to be considered, such as the col-
lisions between the palm spheres and the collisions between
the spheres in the same bone.

5. Details of Training
The training of our framework includes three stages. In

the first stage, the single-view estimation network is trained
for 15 epochs with an initial learning rate of 1e-3, which
drops to 1e-4 at 10-th epoch. In the second stage, the cross-
view fusion network is trained for 10 epochs with an initial
learning rate of 1e-3, which drops to 1e-4 at 5-th epoch. In
the third stage, the whole network is trained for 10 epochs
with an initial learning rate of 1e-4, which drops to 1e-5
at 5-th epoch. Due to the depth offset between the depth
image after style transfer and the original depth image, we
directly use the original synthetic depth image in the third
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Figure 4. The impact of the amount of synthetic data.

stage, which can slightly improve the performance of the
network. For synthetic data, we perform an online data
augmentation by sampling the hand shape with a normal
distribution N(0; 3), the hand scale with a uniform distribu-
tion U(0.8, 1.2) and the hand rotation with a uniform dis-
tribution U(0, 2π). For real data, we perform online data
augmentation including random 2D plain rotation ([-180,
180]), random scaling ([0.8, 1.2]) and random translation ([-
10, 10]). To generate pseudo multi-view data, we perform
data augmentation including random 2D plain rotation ([-
180, 180]), random scaling ([0.7, 1.3]), random translation
([-20, 20]) and random erasing. For the constant weights
used to balance the self-supervised losses, we set wsm = 1,
wcm = 1, wms = 10, wprior = 1, wshape = 0.1, and
wcoll = 0.01. For the single-view scenario, when using
the 1-stacked network, since the performance of cross-view
fusion will decrease, we set wms = 1 to make the self-
supervised training more stable. For the trainging of the Cy-
cleGAN [14], the whole network is trained using Adam [5]
with an initial learning rate of 0.0002. From the 20-th epoch
to the 40-th epoch, the learning rate gradually and linearly
decreases to 0.

6. Impact of the Training Data
In this section, we investigate the impact of the synthetic

data and the amount of labeled data. For synthetic data,
we randomly sampled 200K, 100k, 10K and 1K hand pose
data from the BigHand2.2M dataset [12] to generate syn-
thetic data respectively. For fairness, we increase the num-
ber of epochs of pre-training and fine-tuning as the synthetic
data decreases. Since this experiment needs to perform all
three training stages and we do not have enough GPUs, we
use one-stacked network for this experiment. As shown in
Fig. 4, our method is robust to the amount of synthetic data.
Even if only adopting 1K synthetic data in the pre-training
and fine-tuning, the mean joint error of HPE and HME can
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Figure 5. The performances of HPE and HME with different frac-
tion of labeled data on NYU dataset.

still achieve about 11 mm and 12.6 mm. Furthermore, we
also try to sample pose data from the PCA prior of MANO.
Specifically, we generate the synthetic data by adding ran-
dom noise (uniform distribution [-3, 3]) to the first ten prin-
cipal components of the MANO pose space. In this case,
compared to the model trained with real pose data, the per-
formance of HPE and HME decreased slightly. The above
results demonstrate that our method is robust to the quantity
and quality of synthetic data.

In Fig. 5, we show the performance of the two-stacked
network trained with different percentages of real labeled
data on NYU dataset. By using 100% or even 10% labeled
data, our method outperforms SOTA supervised methods,
whether in multi-view or single-view scenarios. By using
only 1% labeled data, the performance of our method is sig-
nificantly improved.

7. More Qualitative Results
7.1. NYU Dataset

As shown in Fig. 6, we first compare our method with
SOTA strongly supervised methods on some hard samples
on the NYU dataset [10]. Specifically, we select three rep-
resentative strongly supervised methods: 3D CNN based
method (V2V) [7], point cloud based method (P2P) [2]
and pixel-wise pose regression method (AWR) [4]. In par-
ticular, AWR is similar to HPE in our method, but they
show significant differences due to different training mech-
anism. By comparing these hard samples, we draw the fol-
lowing conclusions: (1) For some samples that hand poses
are not complex but with relatively extreme views (5425,
8218), our method can better perceive the depth informa-
tion of the input data and generate a hand pose that better
fits with the depth image. (2) Our method can better main-
tain the hand structure of the predicted pose. For example,
for the gesture of making a fist (3657), all strongly super-
vised methods fail completely. (3) For some complex poses
(4273, 5067), the estimation of our method outperforms not
only strongly supervised methods but also annotations. (4)
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Figure 6. Qualitative results on NYU dataset. Left: the results of some strongly supervised methods. Right: the results of our method with
different training data.

For some extremely complex hand poses (6837, 7130), our
method can not predict accurate results. However, through
self-supervised training on these samples, our method can
achieve relatively reasonable prediction.

Then, we further analyze the effect of training data, in-
cluding the effect of the multi-view data and the effect of
training on the testing samples. From Fig. 7, we draw
the following conclusions: (1) Adopting multi-view data
can significantly reduce the impacts of serious image holes
(548), image noise (1777), and self-occlusion (3901, 2895).
(2) Our method may be confused by the appearance of some
unseen images (6386, 5236), which can be significantly
alleviated by performing self-supervised training on these
confusing data.

7.2. MSRA Dataset

We give some qualitative results to show that MSRA
dataset [9] has serious annotation errors and the overfitting
problem of strongly supervised methods. MSRA dataset
contains 17 hand gestures for 9 subjects, each with approx-
imately 500 images. We find that almost every gesture has
some annotation errors with specific modes, which occur
frequently for all subjects. As shown in Fig. 8, the strongly
supervised method may overfit these annotation errors and
ignore the appearance of the input data. In contrast, our self-
supervised method can generate more accurate posture and

hand meshes. For the gesture with contact between the fin-
gers (79, 686, 2561, 3484, 3572, 4142, 5011) or the gesture
with self-occlusion (4797, 6766), annotations often have se-
rious errors. Even for some simple gestures (1144, 1743,
2198, 5505, 7136), when the hand is rotated globally, the
annotations can also be wrong.
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