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In this supplementary material, we first provide the proof
for the unique matching prior (Section A). We then give
more details about the experimental setting (Section B) and
provide text support for the complementary video file (Sec-
tion C). In Section D, we report the impact of different back-
bone architectures on the method performance. Section C
presents some qualitative results of quasi-dense matching.
Finally, Section E proposes a visualization of feature match-
ing via a heatmap.

A. Unique matching prior: proof
In Section 3 of the main paper, we stated the uniqueness

of matching prior C̄ in Equation 2 (here we drop the indexL
for the sake of simplicity). Given that a C̄ is `1-normalized,
the uniqueness loss concretely encourages all values in C̄
to be close to 0 except one per row (i.e., one per high-level
patch) that will be close to 1.

To prove this, we remind (Equation 1 of the main paper)
that ∀p,
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C̄p,qC̄p,q′ . (B)

Given than C̄ has only non-negative values, this term
reaches its maximum if ∀q 6= q′, either C̄p,q′ = 0 holds
or C̄p,q = 0. Given that the sum over all q is equal to 1,
thanks to the `1-normalization, the optimal solution is that
all values in C̄ for a given p are equal to 0, except one that
is equal to 1.

B. Details on the experimental setting
In Section 4.3 of the main paper, we present experimen-

tal results on several keypoint-based matching tasks and

benchmarks. We have implemented the extraction process
of local descriptors according to the available code1 from
R2D2 [3]. Namely, we extract descriptors by rescaling the
input image at multiple scales (powers of 21/4), starting
from the original resolution and downscaling the image un-
til it becomes smaller than 30% of its initial size. For the
sake of fairness, when computing MMA (Tables 3 and 4,
Figure 5 of the main paper) we select a matching threshold
that corresponds to the same number of matches obtained
by default with the employed keypoint detector (SIFT, Su-
perPoint or R2D2). To that aim, we reject all matches be-
tween descriptors d1,d2 such that d>1 d2 < τ , where τ
is a matching threshold tuned to reach the target number
of matches. We believe this is fair, since what matters ul-
timately for downstream tasks is having as many correct
matches as possible, and not just the proportion of correct
matches. We plot in Figure A the evolution of the MMA@5
score as a function of the number of matches per image,
in comparison to the R2D2 descriptor, when using R2D2
keypoint detection. Our method obtains consistently higher
MMA scores for higher number of matches. In other words,
regardless of the matching threshold, PUMP performs sig-
nificantly better than R2D2 in the sense that it can output
much more correct matches per image. Note that it can also
achieve a much better MMA as well, regardless of how the
matching threshold for R2D2 is tuned. Similar conclusions
hold for all considered keypoint detectors and descriptors.

C. Video with additional qualitative results

In the supplementary video file, we complement the
qualitative results of quasi-dense matching presented in
Section 4.2 and Figure 4 of the main paper. For pairs of
source-target images, the video shows the result of warp-
ing a target image to a source image according to the inter-
polated PUMP matches. Examples include ETH3D ‘Lake-
side’ scene (Figure 4) as well as challenging ‘in the wild’

1https://github.com/naver/r2d2
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https://europe.naverlabs.com/research/3d-vision/pump/supplementary/video.mp4
https://github.com/naver/r2d2
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Figure A. Evolution of MMA@5 score on HPatches as a function
of the matching threshold (all sequences combined, i.e., viewpoint
+ illumination). Exactly the same keypoints (here, R2D2 key-
points) are used for all methods, only keypoint descriptors change.

image pairs, with high-frequency details, a wide baseline,
scale variation, and illumination changes. We find these ex-
amples interesting as they showcase the robustness and gen-
eralization capability of PUMP. In fact, we used the model
trained only on SfM-120k [2] in the S+U setting, i.e., self-
supervision in the form of synthetic deformations in addi-
tion to our unsupervised loss. This model is able to con-
sistently handle complex textures such as moss, rocks, trees
and snow. In Figure C, we show an enlarged version of the
wide baseline matching examples from Figure 4 of the main
paper. Large errors only appear around motion boundaries.

Figure B. An image pair from MegaDepth [1] depicting the same
scene, yet without any shared keypoints according to COLMAP.

D. Impact of the backbone architecture
In this section, we verify if the gain of PUMP can be

attributed to using a ConvMixer backbone or from the un-
supervised loss. To this end, we report in Table A the re-
sults using the backbone from R2D2 instead of ConvMixer.
It confirms our initial findings: even though R2D2 back-
bone performs sightly worse on HPatches, the relative im-
provement yielded by our unsupervised loss (S → S + U )
stays nearly identical to the one observed with ConvMixer

on both datasets.

Backbone Loss HPatches Aachen Day-Night
MMA@1 MMA@3 MMA@5 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

ConvMixer S 37.46 83.38 91.46 69.63 84.82 96.86
ConvMixer S+U 37.83 84.16 92.42 73.30 86.91 98.43

R2D2 S 36.76 80.73 88.71 70.68 85.86 96.34
R2D2 S+U 37.20 81.39 89.41 73.82 87.43 98.95

Table A. Performance comparison for different backbone archi-
tectures.

E. Visualization of feature matching heat maps
Using our unsupervised loss could allow to increase the

amount of data source for training, especially because the
SfM pipeline often fails, e.g. in case of heavy occlusions,
changing illumination, lack of surface texture, or missing
camera intrinsics. Figure B shows an example image pair
from MegaDepth [1] for which there is no shared SIFT key-
points according to COLMAP’s output, despite depicting
the exact same building.

In order to give better insights about how the method
works internally, we show in Figures D and E the correla-
tion maps at different levels in the pyramid. The leftmost
column shows the first image, with the query pixel p and its
receptive field (red), that doubles at each pyramid level. The
middle column depicts, at each pyramid level, the positions
of the 3 most correlated patches in the second image accord-
ing to the correlation map C`

p,· for p, respectively in red,
green and blue. The rightmost column shows the raw cor-
relation map C`

p,·. While initial correlations are extremely
noisy due to the very challenging nature of the scene and the
inherent lack of specificity for small patches on repetitive
textures, it gradually improves when more and more cor-
relations are aggregated into higher-level patches. Finally,
the high level parent patch at level ` = 4 resolves the cor-
rect correspondence with little to no ambiguity, illustrating
how higher-level correlations are consolidated compared to
low-level ones.
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Figure C. Enlarged version of the wide baseline matching examples from Figure 4 of the main paper. Each column shows a different pair
from the most challenging ‘lakeside’ sequence in the ETH3D dataset. The first two rows show pairs of images to match. The third row
shows the first image warped to the second one according to the dense matching predicted by our model. Errors on the ground-truth control
points are represented as circles whose area is proportional to the error, using KITTI error color-code. Zoom insets highlight challenging
areas enclosed between motion boundaries. Overall, large errors mostly appear around motion boundaries.
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Figure D. Consolidated correlation maps C`
p,· and top-3 matches at different pyramid level ` = {1, 2, 3, 4} for a particular pixel p in the

first image. See text for details.
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Figure E. Consolidated correlation maps C`
p,· and top-3 matches at different pyramid level ` = {1, 2, 3, 4} for a particular pixel p in the

first image. See text for details.
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