
Supplementary Material for ”LC-FDNet: Learned Lossless Image Compression
with Frequency Decomposition Network”

Hochang Rhee1, Yeong Il Jang1, Seyun Kim2, Nam Ik Cho1

1Department of ECE, INMC, Seoul National University, Seoul, Korea
2Gauss Labs Inc.

hochang,jyicu@ispl.snu.ac.kr, seyun.kim@gausslabs.ai, nicho@snu.ac.kr

1. Experiments on Low-Resolution Dataset
Here, we compare our method with other compression

algorithms on low-resolution dataset in Table. 6. We val-
idate on three benchmark dataset, ImageNet32 [3], Ima-
geNet64 [3] and CIFAR10 [6]. We do not retrain our net-
work on the low-resolution dataset and rather use the net-
work trained on Flickr2K.

Compared to the non-learning methods, our method
shows superior performance for all three datasets, even
though our network is trained on high-resolution dataset.
For the learning-based methods, it can be observed that
PixelCNN [8] achieves the best performance on all three
datasets, followed by MS-PixelCNN [10]. However, as can
be seen in Table 7, these methods require impractical infer-
ence time prohibiting them from practical use. In addition,
although Zhang et al. [13] and IDF [4] show competitive
performance to ours, they require at least 1.7 times more
computation time.

2. Network Architectures
In this Section, we present the architecture detail of LFC

and HFC in Fig. 6.
LFC: Given input xin, the LFC generates four outputs: 1)
subimage prediction ŷL, 2) error variance map σy , 3) er-
ror variance threshold τy , and 4) probability distribution
pL. Note that the dimension of xin differs depending on
the subimage. We initially pass the input through one Con-
vBlock and three ResBlocks and generate an intermediate
feature.

For the prediction of a subimage, we pass the interme-
diate feature through one convolutional layer. We adopt a
residual scheme for the subimage prediction. That is, in-
stead of directly estimating the pixel value of the subimage
y, the network estimates xL,res, which is the difference be-
tween y and a reference image xref (set as xc,a). For in-
stance, in the case of compressing y = xY,d, the network
sets xY,a as offset and estimates the residual between xY,a

and xY,d. The final output ŷL is derived as xL,res + xY,a.

Table 6. Comparison of our method with other non-learning and
learning-based codecs on low-resolution benchmark dataset. We
measure the performances in bits per pixel (bpp). Best perfor-
mance is highlighted in bold.

Method ImageNet32 ImageNet64 CIFAR10

PNG [2] 19.17 17.22 17.67
JPEG2000 [9] 19.05 13.52 15.60

WebP [12] 15.84 13.92 15.42
LCIC [5] 15.27 14.18 15.90
FLIF [11] 13.56 13.62 12.57

JPEG-XL [1] 19.17 16.18 17.67
PixelCNN [8] 11.49 10.71 9.42

MS-PixelCNN [10] 11.85 11.10 -
Zhang et al. [13] - 11.89 10.45

IDF [4] 12.54 11.70 10.02
L3C [7] 14.28 13.26 -

Ours 13.19 12.85 11.32

Table 7. Encoding time in seconds required for 512×512 images.

PixelCNN MS-PixelCNN Zhang et al. IDF L3C Ours

30600 300 1.47 20.40 0.37 0.84

In other words, the network estimates the residual in respect
to xref . This leads to stable training and performance en-
hancement.

To obtain the error variance map σy , we pass the inter-
mediate feature through one ConvBlock. For the error vari-
ance threshold τy , the intermediate feature goes through a
sequence of ConvBlock and MaxPooling. At the end, global
average pooling (GAP) is applied to derive τy , which is a
scalar value.

HFC: The architecture of the HFC is similar to the LFC.
The difference is that the low-frequency components are
given as additional input, and the HFC generates only two
outputs: 1) subimage prediction ŷH and 2) probability dis-
tribution pH . Other factors are the same as the LFC.

Finally, the probability distribution pL is derived by

1



R
e

s
B

lo
c
k

6
4

R
e

s
B

lo
c
k

6
4

3
x
3

 C
o

n
v

6
4

𝑥𝑖𝑛

𝑥𝑟𝑒𝑓 = 𝑥𝑐,𝑎

+

𝑥𝐿,𝑟𝑒𝑠 ො𝑦𝐿

C
o

n
v
B

lo
c
k

6
4

M
a

x
P

o
o

l

C
o

n
v
B

lo
c
k

6
4

M
a

x
P

o
o

l

C
o

n
v
B

lo
c
k

6
4

G
A

P

𝜏𝑦

C
o

n
v
B

lo
c
k

6
4

𝜎𝑦

C
o

n
v
B

lo
c
k

1
2

8

3
x
3

 C
o

n
v

1
2

8

𝑝𝐿

3
x
3

 C
o

n
v

6
4

B
a

tc
h

N
o

rm

ConvBlock 64

R
e

L
U

ResBlock 64

3
x
3

 C
o

n
v

6
4

B
a

tc
h

N
o

rm

3
x
3

 C
o

n
v

6
4

B
a

tc
h

N
o

rm

+
R

e
L

U

R
e

L
U

S
o

ft
m

a
x

(a) Low Frequency Compressor Network Architecture

R
e

s
B

lo
c
k

6
4

R
e
s
B

lo
c
k

6
4

𝑥𝑖𝑛

𝑥𝑟𝑒𝑓 = 𝑥𝑐,𝑎

+

𝑥𝐻,𝑟𝑒𝑠 ො𝑦𝐻

C
o
n

v
B

lo
c
k

1
2

8

3
x
3

 C
o
n

v
1

2
8

𝑝𝐻𝑦 ⊙𝑚𝐿

R
e

s
B

lo
c
k

6
4

C
o

n
v
B

lo
c
k

6
4 3

x
3

 C
o

n
v

6
4

S
o

ft
m

a
x

(b) High Frequency Compressor Network Architecture

Figure 6. Architecture details of LFC and HFC.



ො𝑦𝐿

𝑦

𝑞𝐿

𝜎𝑦 𝑚𝐿𝑥𝑖𝑛

Q −

≤ 𝜏𝑦

Entropy 

Decoder

Low Frequency Compressor

Entropy 

Decoder

𝑥𝑖𝑛

ො𝑦𝐻

Q −

𝑞𝐻

𝜏𝑦

𝑝𝐿

𝑝𝐻
𝑚𝐻 = 1 −𝑚𝐿

Adaptive Frequency Decomposition

Bitstream

𝑦𝐿 = 𝑦⊙𝑚𝐿

Bitstream

High Frequency Compressor

𝑦𝐻 = 𝑦⊙𝑚𝐻

+

Figure 7. Illustration of the decoding procedure.

passing the intermediate feature through one ConvBlock,
one convolutional layer, and a softmax operation at the end.
Note that whereas other layers consist of 64 hidden units,
we double the number of hidden units for obtaining pL.

3. Decoding Procedure

In Fig. 7, we explain the procedure of decoding a bit-
stream into a subimage. When encoding a subimage y,
the network compresses the subimage into bitstreams with
the inputs xin and y. For the decoding, the inputs are xin

and bitstreams. We first explain the decoding of the low-
frequency components in AFD and LFC parts.

Same as in the encoding procedure, four outputs are gen-
erated from xin: 1) subimage prediction ŷL, 2) error vari-
ance map σy , 3) error variance threshold τy , and 4) prob-
ability distribution pL. ADF is also equivalent as in the
encoding procedure, where the low-frequency mask mL is
obtained using Eq. 2. Afterward, the entropy decoder re-
ceives 3 inputs pL, mL, and bitstream, and then generates
qL ∈ RH

2 ×W
2 ×1. From the obtained qL, we reconstruct yL,

the low-frequency component of the subimage y. Specifi-
cally, yL = round(ŷL) − qL, which is the inverse of the
encoding procedure qL = round(ŷL − yL).

Decoding of high-frequency components in the HFC is
similar to the LFC. Precisely, xin and yL = y ⊙ mL are
given as input to produce ŷH and pH . Again, the entropy
decoder receives three inputs pH , mH , and bitstream, and
generates qH . Then, the high-frequency components of the
subimage yH is reconstructed from yH = round(ŷH−qH).
Finally, we reconstruct the subimage y by the addition of yL
and yH .

4. Subimage Order Analysis

In this section, we show how the performance differs de-
pending on the order of subimage compression. Specifi-

Table 8. Comparison of compression performance with different
order of subimage compression.

Method CLIC.m CLIC.p DIV2K
a −→ b −→ c −→ d 4.72 +1.3% 5.36 +1.5% 5.59 +1.8%

a −→ d −→ b −→ c 4.66 5.28 5.49

Table 9. Compression result of each subimage for the DIV2K
dataset when compressed in the order of a −→ b −→ c −→ d.

bpp a b c d
Y - 1.02 0.81 0.77
U - 0.61 0.45 0.45
V - 0.60 0.45 0.43

Total 2.68 2.23 1.71 1.65

cally, we compare the order of a −→ d −→ b −→ c (ours)
against a −→ b −→ c −→ d (MS-PixelCNN [10]) in Table 8.
We observe that our design of subimage order achieves at
most 1.8% performance gain. In Table 9, we report the com-
pression result for each subimage when compressed in the
order of a −→ b −→ c −→ d. Compared to Table 2, it can be
observed that whereas d in a −→ d −→ b −→ c requires 2.13
bpp, b in a −→ b −→ c −→ d requires 2.23 bpp. From this, we
can conclude that given a, the estimation of d is easier than
b.

References
[1] Jyrki Alakuijala, Ruud van Asseldonk, Sami Boukortt, Mar-

tin Bruse, Iulia-Maria Coms, a, Moritz Firsching, Thomas Fis-
chbacher, Evgenii Kliuchnikov, Sebastian Gomez, Robert
Obryk, et al. Jpeg xl next-generation image compression
architecture and coding tools. In Applications of Digital Im-
age Processing XLII, volume 11137, page 111370K. Inter-
national Society for Optics and Photonics, 2019. 1

[2] Thomas Boutell and T Lane. Png (portable network graph-



ics) specification version 1.0. Network Working Group,
pages 1–102, 1997. 1

[3] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the ci-
far datasets. arXiv preprint arXiv:1707.08819, 2017. 1

[4] Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg,
and Max Welling. Integer discrete flows and lossless com-
pression. arXiv preprint arXiv:1905.07376, 2019. 1

[5] Seyun Kim and Nam Ik Cho. Hierarchical prediction and
context adaptive coding for lossless color image compres-
sion. IEEE Transactions on image processing, 23(1):445–
449, 2013. 1

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[7] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,
Radu Timofte, and Luc Van Gool. Practical full resolu-
tion learned lossless image compression. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10629–10638, 2019. 1

[8] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Con-
ditional image generation with pixelcnn decoders. arXiv
preprint arXiv:1606.05328, 2016. 1

[9] Majid Rabbani. Jpeg2000: Image compression fundamen-
tals, standards and practice. Journal of Electronic Imaging,
11(2):286, 2002. 1

[10] Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez
Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, and
Nando Freitas. Parallel multiscale autoregressive density es-
timation. In International Conference on Machine Learning,
pages 2912–2921. PMLR, 2017. 1, 3

[11] Jon Sneyers and Pieter Wuille. Flif: Free lossless image for-
mat based on maniac compression. In 2016 IEEE interna-
tional conference on image processing (ICIP), pages 66–70.
IEEE, 2016. 1

[12] WebEngines Blazer Platform Version. 1.0 hardware refer-
ence guide, xp-002202892, network engines. Inc., Jun, 1:92,
2000. 1

[13] Honglei Zhang, Francesco Cricri, Hamed R Tavakoli, Nan-
nan Zou, Emre Aksu, and Miska M Hannuksela. Lossless
image compression using a multi-scale progressive statistical
model. In Proceedings of the Asian Conference on Computer
Vision, 2020. 1


	. Experiments on Low-Resolution Dataset
	. Network Architectures
	. Decoding Procedure
	. Subimage Order Analysis

