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1. Experiments on Low-Resolution Dataset

Here, we compare our method with other compression
algorithms on low-resolution dataset in Table. 6. We val-
idate on three benchmark dataset, ImageNet32 [3], Ima-
geNet64 [3] and CIFAR10 [6]. We do not retrain our net-
work on the low-resolution dataset and rather use the net-
work trained on Flickr2K.

Compared to the non-learning methods, our method
shows superior performance for all three datasets, even
though our network is trained on high-resolution dataset.
For the learning-based methods, it can be observed that
PixelCNN [8] achieves the best performance on all three
datasets, followed by MS-Pixel CNN [10]. However, as can
be seen in Table 7, these methods require impractical infer-
ence time prohibiting them from practical use. In addition,
although Zhang et al. [13] and IDF [4] show competitive
performance to ours, they require at least 1.7 times more
computation time.

2. Network Architectures

In this Section, we present the architecture detail of LFC

and HFC in Fig. 6.
LFC: Given input x;,, the LFC generates four outputs: 1)
subimage prediction §jz,, 2) error variance map o, 3) er-
ror variance threshold 7,, and 4) probability distribution
pr. Note that the dimension of z;, differs depending on
the subimage. We initially pass the input through one Con-
vBlock and three ResBlocks and generate an intermediate
feature.

For the prediction of a subimage, we pass the interme-
diate feature through one convolutional layer. We adopt a
residual scheme for the subimage prediction. That is, in-
stead of directly estimating the pixel value of the subimage
Yy, the network estimates x, .5, Which is the difference be-
tween y and a reference image ..y (set as z.,). For in-
stance, in the case of compressing y = Tvy,q, the network
sets zy,, as offset and estimates the residual between zy
and zy 4. The final output ¢y, is derived as X1 res + Ty q-

Table 6. Comparison of our method with other non-learning and
learning-based codecs on low-resolution benchmark dataset. We
measure the performances in bits per pixel (bpp). Best perfor-
mance is highlighted in bold.

Method ImageNet32 ImageNet64 CIFAR10

PNG [2] 19.17 17.22 17.67
JPEG2000 [9] 19.05 13.52 15.60
WebP [12] 15.84 13.92 15.42
LCIC [5] 15.27 14.18 15.90
FLIF [11] 13.56 13.62 12.57
JPEG-XL [1] 19.17 16.18 17.67
PixelCNN [8] 11.49 10.71 942

MS-PixelCNN [10] 11.85 11.10 -
Zhang et al. [13] - 11.89 10.45
IDF [4] 12.54 11.70 10.02

L3C[7] 14.28 13.26 -
Ours 13.19 12.85 11.32

Table 7. Encoding time in seconds required for 512x 512 images.

PixelCNN  MS-PixelCNN Zhang et al. IDF L3C Ours

30600 300 1.47 2040 037 0.84

In other words, the network estimates the residual in respect
to Z,c¢. This leads to stable training and performance en-
hancement.

To obtain the error variance map o, we pass the inter-
mediate feature through one ConvBlock. For the error vari-
ance threshold 7, the intermediate feature goes through a
sequence of ConvBlock and MaxPooling. At the end, global
average pooling (GAP) is applied to derive 7, which is a
scalar value.

HFC: The architecture of the HFC is similar to the LFC.
The difference is that the low-frequency components are
given as additional input, and the HFC generates only two
outputs: 1) subimage prediction ¢y and 2) probability dis-
tribution pg;. Other factors are the same as the LFC.
Finally, the probability distribution py is derived by
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(b) High Frequency Compressor Network Architecture
Figure 6. Architecture details of LFC and HFC.
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Figure 7. Illustration of the decoding procedure.

passing the intermediate feature through one ConvBlock,
one convolutional layer, and a softmax operation at the end.
Note that whereas other layers consist of 64 hidden units,
we double the number of hidden units for obtaining py,.

3. Decoding Procedure

In Fig. 7, we explain the procedure of decoding a bit-
stream into a subimage. When encoding a subimage y,
the network compresses the subimage into bitstreams with
the inputs x;,, and y. For the decoding, the inputs are x;,
and bitstreams. We first explain the decoding of the low-
frequency components in AFD and LFC parts.

Same as in the encoding procedure, four outputs are gen-
erated from x;,,: 1) subimage prediction ¢z, 2) error vari-
ance map oy, 3) error variance threshold 7, and 4) prob-
ability distribution p;. ADF is also equivalent as in the
encoding procedure, where the low-frequency mask my, is
obtained using Eq. 2. Afterward, the entropy decoder re-
ceives 3 inputs pr, my, and bitstream, and then generates
qr € R %> % *1 From the obtained qr,, we reconstruct y,,
the low-frequency component of the subimage y. Specifi-
cally, y, = round(yr) — qr, which is the inverse of the
encoding procedure gy, = round(yr — yr,)-

Decoding of high-frequency components in the HFC is
similar to the LFC. Precisely, x;, and y; = y ® mp, are
given as input to produce ¢z and pg. Again, the entropy
decoder receives three inputs py, my, and bitstream, and
generates qr. Then, the high-frequency components of the
subimage yy is reconstructed from yy = round(§g —qu ).
Finally, we reconstruct the subimage y by the addition of y,
and yz.

4. Subimage Order Analysis

In this section, we show how the performance differs de-
pending on the order of subimage compression. Specifi-

Table 8. Comparison of compression performance with different
order of subimage compression.

Method CLIC.m CLIC.p DIV2K
a—b—c—d | 472 +13% 536+15% 5.59 +1.8%
a—d—b—c | 466 5.28 5.49

Table 9. Compression result of each subimage for the DIV2K
dataset when compressed in the order of a — b — ¢ — d.

bpp a b c d

Y - 1.02 081 0.77
U - 0.61 045 045
|4 - 0.60 045 043

Total | 2.68 223 1.71 1.65

cally, we compare the order of a« — d — b — ¢ (ours)
against a — b — ¢ — d (MS-PixelCNN [10]) in Table 8.
We observe that our design of subimage order achieves at
most 1.8% performance gain. In Table 9, we report the com-
pression result for each subimage when compressed in the
order of a — b — ¢ — d. Compared to Table 2, it can be
observed that whereas d in a — d — b — c requires 2.13
bpp, bin a — b — ¢ — d requires 2.23 bpp. From this, we
can conclude that given a, the estimation of d is easier than
b.
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