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Location of SSPCAB AUC RBDC TBDC
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80.0 83.4 49.98 51.69
X 81.1 83.6 50.86 52.44

X 84.2 85.0 52.73 54.02
X 85.9 85.6 53.81 56.33

X X 82.7 83.8 50.54 52.70
X X 83.2 84.1 52.33 53.01

X X 86.1 85.7 54.03 56.07
X X X 85.3 85.4 53.11 56.64

Table 1. Micro-averaged frame-level AUC, macro-averaged
frame-level AUC, RBDC, and TBDC scores (in %) on Avenue,
while integrating SSPCAB into an auto-encoder, at different lo-
cations. SSPCAB improves the results regardless of the integra-
tion place or the number of blocks. The option highlighted in red
is used throughout the experiments presented in the main article.
Best results are highlighted in bold.

Size of M AUC RBDC TBDC
Micro Macro
80.0 83.4 49.98 51.69

1× 1 85.9 85.6 53.81 56.33
3× 3 85.9 85.5 53.93 56.31

Table 2. Micro-averaged frame-level AUC, macro-averaged
frame-level AUC, RBDC, and TBDC scores (in %) on Avenue,
while varying the size of the masked kernel M .

1. Ablation Study

In the main article, we mention that we generally replace
the penultimate convolutional layer with SSPCAB in under-
lying models [2, 5, 7, 8, 11, 16]. Ideally, for optimal perfor-
mance gains, the integration place and the number of SSP-
CAB modules should be tuned on a validation set for each
framework. However, anomaly detection data sets do not
have a validation set and there is no way to obtain one from
the training set, as the training contains only normal exam-
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Figure 1. Additional anomaly localization examples of DRAEM
[16] (blue) versus DRAEM+SSPCAB (green) on MVTec AD. The
ground-truth anomalies are marked with a red mask. Best viewed
in color.

ples. In this context, to fairly demonstrate the generality
and utility of SSPCAB, we only used a single configuration
(one block, closer to the output) across all existing frame-
works. However, adding more modules could be beneficial.
To test various configurations, we perform an ablation study
on the number of SSPCAB modules and the places where
these modules can be integrated in a plain auto-encoder. In
Table 1, we present the corresponding experiments on the
Avenue data set. We observe that SSPCAB improves the re-
sults, regardless of the place of integration or the number
of blocks. The improvements seem larger when SSPCAB is
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Figure 2. Frame-level anomaly scores for Liu et al. [7] before
(baseline) and after (ours) integrating SSPCAB, for test video
10 from Avenue. Anomaly localization results correspond to the
model based on SSPCAB. Best viewed in color.

integrated closer to the output. Integrating more blocks can
sometimes help.

Another hyperparameter that could be tuned is the size
of the masked kernel M . In our experiments, we kept M
to a size of 1 × 1 for simplicity and speed. To study the
effect of increasing the size of M , we have tested the size
of 3× 3 with the plain auto-encoder on Avenue. We report
the corresponding results in Table 2. When comparing the
results with masked kernels of 1 × 1 or 3 × 3 components,
we do not observe significant differences.

An additional aspect that can suffer multiple reconfigu-
rations, given a validation set, is the pattern of the proposed
kernel. In our experiments, we tried a simple pattern where
the mask is placed in the center and the reception field is
connected to the four corner sub-kernels denoted by Ki,
∀i ∈ {1, 2, 3, 4}. We designed this pattern while trying to
extrapolate the idea from middle frame prediction (which
was shown to provide somewhat better results than future
frame prediction) to a 2D kernel. Of course, other patterns
are possible and are likely to work equally well.

2. Qualitative Anomaly Detection Results
Anomaly detection in images. In Figure 1, we present ad-
ditional qualitative results produced by DRAEM [16] on
the MVTec AD benchmark. The displayed examples il-
lustrate the benefit of integrating SSPCAB, which is much
better at segmenting the anomalies compared to the base-
line DRAEM. We show improvements in terms of the pixel-
level annotation for both objects and textures.
Anomaly detection in videos. In Figure 2, we show a com-
parison of the frame-level anomaly scores on test video 10

Figure 3. Frame-level anomaly scores for Georgescu et al. [2] be-
fore (baseline) and after (ours) integrating SSPCAB, for test video
01 0054 from ShanghaiTech. Anomaly localization results corre-
spond to the model based on SSPCAB. Best viewed in color.

Figure 4. Frame-level anomaly scores for Georgescu et al. [2] be-
fore (baseline) and after (ours) integrating SSPCAB, for test video
01 0130 from ShanghaiTech. Anomaly localization results corre-
spond to the model based on SSPCAB. Best viewed in color.

from the Avenue data set, before and after integrating SSP-
CAB into the method of Liu et al. [7]. On this video, SSP-
CAB increases the AUC by nearly 4%. After introducing
SSPCAB, we observe higher frame-level anomaly scores
for the first abnormal event. The anomaly localization re-
sults depict a person throwing a backpack and a person
walking in the wrong direction.

In Figures 3 and 4, we illustrate similar comparisons for
test videos 01 0054 and 01 0130 from the ShanghaiTech
data set, before and after adding SSPCAB into the frame-



Figure 5. Frame-level anomaly scores for Georgescu et al. [2] be-
fore (baseline) and after (ours) integrating SSPCAB, for test video
07 0047 from ShanghaiTech. Anomaly localization results corre-
spond to the model based on SSPCAB. Best viewed in color.

Method Time (ms) Relative (%)
Baseline +SSPCAB

Liu et al. [7] 2.1 2.4 14.2
Georgescu et al. [2] 1.5 1.7 13.3

Table 3. Inference times (in milliseconds) and relative time expan-
sions (in %) for two frameworks [2,7], before and after integrating
SSPCAB. The running times are measured on an Nvidia GeForce
GTX 3090 GPU with 24 GB of VRAM.

work of Georgescu et al. [2]. For test video 01 0054, SSP-
CAB increases the AUC by more than 10%. For test video
01 0130, the baseline framework seems to detect the abnor-
mal event too early, but SSPCAB seems capable of shifting
the detection towards the correct moment. As a result, SSP-
CAB increases the frame-level AUC score by almost 6%.
We observe a similar AUC improvement from SSPCAB in
Figure 5, where we compare the frame-level anomaly scores
on test video 07 0047 from the ShanghaiTech data set. For
this video, we underline that the frame-level scores are vis-
ibly more correlated to the ground-truth anomalies. More-
over, in all three ShanghaiTech videos, we observe that the
approach based on SSPCAB can precisely localize and de-
tect the abnormal events (person pulling a lever cart, car
inside pedestrian area, people fighting, people running).

3. Inference Time

Regardless of the underlying framework [2,5,7,8,11,16],
we add only one instance of SSPCAB, usually replacing
the penultimate convolutional layer. As such, we expect
the running time to increase. To assess the amount of extra

time added by SSPCAB, we present the running times be-
fore and after integrating SSPCAB into two state-of-the-art
frameworks [2, 7] in Table 3. The reported times show time
expansions lower than 0.3 ms for both frameworks. Hence,
we consider that the accuracy gains brought by SSPCAB
outweigh the marginal running time expansions observed in
Table 3.

4. Discussion
Although SSPCAB belongs to an existing family

of anomaly detection methods, i.e. reconstruction-based
frameworks [1, 3, 4, 6, 7, 9–15], we would like to under-
line that we are the first to integrate the reconstruction func-
tionality at the block level. Unlike other reconstruction ap-
proaches, our contribution is more flexible, as it can be inte-
grated in existing and future reconstruction methods. More-
over, SSPCAB can also be used to introduce reconstruction-
based anomaly detection in other frameworks, which do not
rely on reconstruction. We thus believe that our generic and
effective approach will help ease future research in anomaly
detection.

An important aspect that must be noted is that, due to the
masked convolution, our block will not reconstruct the in-
put exactly. Except for the degenerate case where the input
is constant, this scenario should not occur in the real world,
which means that the reconstruction performed by SSPCAB
is not trivial. However, our foremost intuition about the use-
fulness of SSPCAB is different: our block provides a bet-
ter reconstruction for normal convolutional features than for
abnormal convolutional features. If the features represent-
ing normal versus abnormal examples are different at any
layer of a neural architecture, it should result in greater dif-
ferences at the final output of the architecture. This idea is
also supported by the experiments presented in Table 1.

Further looking at the results shown in Table 1, we ob-
serve that SSPCAB does not bring significant gains when
the block is placed near the input. We aim to further inves-
tigate this limitation in future work. Aside from this small
issue, we did not observe other limitations of SSPCAB dur-
ing our experiments.
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