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1. Datasets

1.1. ScanNet [3]

Motion Blur Detection We consider motion blur when
sampling a small subset of images to be used in NeRF: From
each window of n consecutive video frames the sharpest
one is selected according to the following metric, where
high values indicate sharpness: first, an image is converted
to grayscale, then it is convolved with a discrete Laplacian
kernel; finally, the variance is computed. n is set to 10 or
20, depending on how densely the video samples the scene.

Train/Test Image Selection After removing images
with severe motion blur, we consider the following crite-
ria: 1) SfM successfully registers the set of images. 2) Sur-
faces to be reconstructed are observed from at least one in-
put view. In practice, images are removed if their content
is visible by other images and the remaining set fulfils 1).
This way, 22% of the train pixels are not observed by any
other train view, 31% are observed by one other, 47% by
two or more. Test views have on average 66% overlap with
their most overlapping train view.

Image Resolution The image resolution is 468×624
after downsampling and cropping dark borders from cali-
bration.

Test Scenes We ensure that the test scenes are complete,
sufficiently large rooms. The following scenes are used for
evaluation:

• scene0710 00
• scene0758 00
• scene0781 00

SfM Quality on Few Views Figure 1 shows the mean
absolute error (MAE) of the SfM points against the sensor
depth. It is computed on the 6291 points from the three
ScanNet evaluation scenes. The maximal error is 5.85m.
We do not filter the COLMAP SfM output, i.e., all points
are projected to the corresponding input views and used as
input to the depth completion.
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Figure 1. SfM depth error on ScanNet.

1.2. Matterport3D [1]

Train/Test Image Selection Similar to ScanNet, it is
ensured that surfaces are observed from at least one input
view. 25% of the train pixels are not observed by any other
train view, 45% are observed by one other, 30% by two or
more. Test views have on average 67% overlap with their
most overlapping train view.

Image Resolution The image resolution is 504×630
after downsampling and cropping dark borders from cali-
bration.

Test Scenes We avoid unbounded open space, which
is challenging for NeRF approaches. The following scenes
are used for evaluation:

• Region 5, house VzqfbhrpDEA
• Region 2, house Vvot9Ly1tCj
• Region 19, house Vvot9Ly1tCj

2. Impact of Sparse Depth Density

We investigate the impact of the sparse depth density
on Matterport3D by decreasing it from 0.1% to 0.05% and
0.01% (Tab. 1). While reduced sparse depth lowers per-
formance, it clearly shows that depth completion increases
the value of very sparse depth input: With just one tenth
of the sparse depth our method still performs better, than
the version without completion. Despite 0.01% being very
sparse—just 32 points per image on average—we expect
that using monocular depth estimation is challenging as
view-consistent depth is needed.



Sparse depth Depth
Method density PSNR↑ SSIM↑ LPIPS↓ RMSE ↓
Ours w/o completion 0.10% 16.90 0.615 0.521 0.427
Ours 0.10% 18.33 0.673 0.402 0.114
Ours 0.05% 18.10 0.662 0.414 0.136
Ours 0.01% 17.99 0.662 0.437 0.140

Table 1. Impact of sparse depth density on Matterport3D. Depth
RMSE is in meters.

ScanNet Matterport3D

Ours w/o Completion 1.0 0.25
Ours w/o Uncertainty 0.001 0.007
Ours w/o GNLL 0.04 0.03
Ours w/o Latent Code 0.003 0.007
Ours 0.003 0.007

Table 2. Depth loss weights λ.

3. Implementation Details
3.1. Our Method

Radiance Fields Our model architecture is based on
NeRF [7]. The encoded position γ(x) is provided as input
to the first of 8 layers as well as to the fifth, by concate-
nating it with the activations from the fourth layer. Layers
1–8 each have 256 neurons and ReLU activations. The out-
put of layer 8 is passed through a single layer with softplus
activation to produce density σ. The output of layer 8 is
also passed through a 256-channel layer without activation,
whose output is concatenated with the viewing direction d
and the latent code ℓ. The concatenated vector is fed to
a 128-channel layer with ReLU activation, before the final
layer producing the color c. The latent codes ℓ have a size
of 4 on ScanNet and 16 on Matterport3D. Due to the dif-
ferent characteristics of the depth input on the two datasets,
a suitable depth loss weight λ is determined for each ap-
proach and dataset and used across all scenes of the same
dataset (Tab. 2).

Depth Completion The depth completion network is
based on the architecture from Cheng et al. [2]. We use
a ResNet-18 [5] encoder and add a second upsampling
branch for uncertainty estimation. It equally consists of up-
projection layers with skip connections to the same down-
sampling layers as the depth prediction branch. To increase
performance on very sparse input depth, both branches use
a CSPN module, configured to 48 iterations in the depth
branch and 24 iterations in the standard deviation branch.
The depth completion network is trained at a lower resolu-
tion of 256×320 on Matterport3D, and 240×320 on Scan-
Net. We use the Adam optimizer [6] with a learning rate
of 0.0001 and a batch size of 8. We train for 50 epochs on
Matterport3D and 12 epochs on ScanNet. On Matterport3D
80 houses are used for training, 5 houses for validation, and

5 houses for testing. On ScanNet we use the provided data
split. We ensure that the scenes used for NeRF are not in-
cluded during training, and are instead in the test sets.

3.2. NerfingMVS [8]

The error map calculation used by NerfingMVS was not
sufficiently robust to by applied to entire rooms, so to im-
prove this baseline’s performance we adapted it as follows:

Original Calculation For each input view an error map
is computed by projecting the 3D points according to the
depth prior to all other views, where a depth reprojection
error is computed and normalized with the projected depth.
The mean of the 4 smallest errors are used as values in the
error map.

Problem on Entire Rooms When applying the com-
putation on entire rooms as opposed to a local region, the
projected 3D points from other views frequently lie behind
the camera. As a result the computed mean is often nega-
tive. Similarly, the computation of the near and far planes
of the scenes is not suited for entire rooms, leading to a
negative near plane in our case. Negative near plane and
negative error map content lead to invalid sampling ranges,
where the far bound lies in front of the near bound. to ad-
dress this, we set the near and far planes (tn and tf ) of each
scene such that all depth prior values are contained. In the
error map calculation, we assign a maximal error tf − tn
for projected points that lie behind the camera. Afterwards,
the error map values are still computed as the mean of the
smallest 4 errors.

3.3. DS-NeRF [4]

We used the same positional encoding frequencies as de-
scribed for our method in the main paper for this baseline,
which improved its performance. A depth loss weight of
0.1 was suitable for the ScanNet scenes.

3.4. NeRF [7]

As in DS-NeRF, we used our own positional encoding
frequencies for this baseline, which improved its perfor-
mance.
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