
A Scalable Combinatorial Solver for Elastic
Geometrically Consistent 3D Shape Matching

– APPENDIX –

Paul Roetzer1,2 Paul Swoboda3 Daniel Cremers1 Florian Bernard2

TU Munich1 University of Bonn2 MPI Informatics3

100 200 300 400 500

0.5

1

Faces

Ti
m

e
[h

]

Windheuser [5]
Ours

Orientation-preserving matching Partial-to-partial shape matching (without using complete shape) Runtime comparison to Windheuser et al.

Figure A1. We propose a novel combinatorial solver for the non-rigid matching of 3D shapes based on discrete orientation-preserving
diffeomorphisms [5] (left). For the first time we utilize an orientation-preserving diffeomorphism to constrain the challenging problem
of non-rigidly matching a pair of partial shapes without availability of complete shapes (center). Our solver scales significantly better
compared to existing solvers and can thus handle shapes with practically relevant resolutions (right).

A1. Product Triangles to Explore

In the following we explain the neighborhood be-
tween product triangles. For the f -th product triangle
(a1b1, a2b2, a3b3) the set of neighbors FN (f) is defined as

FN (f) =

 a′1b
′
1

a′2b
′
2

a′3b
′
3

 ∈ F :

(a′1b
′
1 = a2b2 ∧ a′2b

′
2 = a1b1)∨

(a′1b
′
1 = a3b3 ∧ a′2b

′
2 = a2b2)∨

(a′1b
′
1 = a1b1 ∧ a′2b

′
2 = a3b3)∨

(a′2b
′
2 = a2b2 ∧ a′3b

′
3 = a1b1)∨

(a′2b
′
2 = a3b3 ∧ a′3b

′
3 = a2b2)∨

(a′2b
′
2 = a1b1 ∧ a′3b

′
3 = a3b3)∨

(a′3b
′
3 = a2b2 ∧ a′1b

′
1 = a1b1)∨

(a′3b
′
3 = a3b3 ∧ a′1b

′
1 = a2b2)∨

(a′3b
′
3 = a1b1 ∧ a′1b

′
1 = a3b3)

.

In words, every product triangle which shares an opposite
oriented edge with the f -th product triangle is neighboring
to the f -th product triangle. The union of all sets FN (f)

yields the set of exploration candidates

Fexpl =
⋃

f part of solution

FN (f). (A1)

When searching for new matchings with our primal heuris-
tic, we only iterate over the product triangles in Fexpl. If
none of the product triangles in Fexpl is feasible, the current
partial solution cannot be rounded to a feasible solution and
previously added matchings are removed.

A2. Recomputation of Min-Marginals
In order to obtain a rounded primal solution we repeat-

edly recompute the min-marginals after a certain number of
calls of the primal heuristic. To this end, we make a trade-
off between computation time and quality of min-marginals
and achievable solutions. For k being the total number
of calls of the primal heuristic, we compute the threshold
α = 0.2 · min(|FX |, |FY |), and whenever we have added
k·α product triangles to the solution, we re-compute the
min-marginals. For that, we first fix variables in (ILP-SM),
then dualize (ILP-SM), and eventually solve the dual prob-
lem again.

A3. Comparison to Windheuser et al.
Reimplementation of Windheuser et al.’s approach.

Windheuser et al. tackle the ILP formulation (ILP-SM)
through an LP-relaxation, for which variables are gradually

1

rounded to binary values and then kept fixed. This process is
repeated until all constraints are fulfilled. The LP-relaxation
reads

min
Γ∈[0,1]|F |

E
⊤Γ s.t.

πX

πY

∂

Γ =

1|FX |
1|FY |
0|E|

 . (A2)

In Algorithm 1 we sketch our re-implementation of the ap-
proach by Windheuser et al., which follows the procedure
explained in [5]. For solving the LP-relaxation we use the
state-of-the-art LP-solver Gurobi [3].

Algorithm 1: Solving (ILP-SM) according to
Windheuser et al.

Input: (A2)
Output: Solution Γ ∈ {0, 1}|F |

1 while Constraints not fulfilled do
2 Solve LP A2 (while keeping already set

elements of Γ fixed);
3 if Γi > 0.5 then
4 Fix Γi = 1;
5 end
6 end

Test setup. In Fig. 6 of the main paper we quantitatively
compare our solver to the approach by Windheuser et al. We
complement these results with Fig. A2, where we show the
corresponding curves for the individual classes. In this ex-
periment for each shape matching instance we first run our
method, and afterwards run the approach by Windheuser et
al. with a fixed time budget. This is implemented by track-
ing the total time of Algorithm 1 (including within the LP-
solver itself), and once the limit is reached the algorithm is
terminated and the current (possibly partial) solution is used
as matching.

In all experiments we allow the method of Windheuser et
al. to use 10× more time than ours – even with this generous
time budget the method by Windheuser et al. is often not
able to produce a complete matching.

A4. Partial Shape Matching

While the original formalism (ILP-SM) assumes that the
shapes do not have a boundary, we propose a simple yet
effective way of dealing with partial shapes. To this end,
we simply close existing holes with triangular patches and
then compute our energy for each product triangle that in-
volves a ‘hole-triangle’. In Fig. A3 we show an example
of shapes with closed holes and their corresponding shapes
with holes. We note that in all other visualizations we do not
show the closed holes but highlight all shape boundaries.

Windheuser et al. Ours

0 0.5 1
0

50

100

cat

0 0.5 1
0

50

100

centaur

0 0.5 1
0

50

100

dog

0 0.5 1
0

50

100

david

0 0.5 1
0

50

100

gorilla

0 0.5 1
0

50

100

horse

0 0.5 1
0

50

100

michael

0 0.5 1
0

50

100

victoria

0 0.5 1
0

50

100

wolf

Figure A2. Comparison of the percentage of correct matchings for
different shape classes of the TOSCA dataset. The horizontal axis
shows the geodesic error threshold, and the vertical axis shows the
percentage of matches that are smaller than or equal to this error.
We reduce all shapes to 175 triangles. For Windheuser et al. we
allow the solver to take 10× more time than our method needed.
The curves by Windheuser et al. are lower because often it only
finds only few matchings within the given time budget.

.

Figure A3. Matching of partial wolf shapes with our approach.
At the top, we additionally show the closed shapes (hole-closing
triangles are plotted in gray).

A5. Additional Results

Additional qualitative results. In Fig. A4 we show ad-
ditional qualitative matchings of the method by Eisenberger
et al. [2], Ren et al. [4] and ours. The experimental setting
corresponds to Fig. 5 of the main paper.

Figure A4. Qualitative comparison of the method by Eisenberger et al. [2] (second row), Ren et al. [4] (third row) and Ours (last row) on
the TOSCA dataset.

Additional quantitative results. In Fig. A8 we show er-
ror curves for individual shape classes of TOSCA and KIDS
dataset.

Shape resolution and discretization. A strong advan-
tage of the utilized discrete matching model is that by allow-
ing for degenerate matchings (triangle-vertex and triangle-
edge matchings) it can handle different shape resolutions
and discretizations. In Fig. A5 we show this for shapes
with different discretisation (left), as well as for substan-
tially varying resolution (right, factor of ≈3× more trian-
gles).

Figure A5. Matching shapes with different discretisation for two
shape pairs.

In Fig. A6 we show additional partial-to-partial results
with shapes of different mesh resolution (factor of ≈

√
2)

for different levels of partiality.

Reference 80% 70% 60% 50%

Figure A6. Matching shapes with different levels of partiality with
different mesh resolution. At the partiality level of around 50 % of
the original shape no plausible matching can be found anymore.

Non-isometries. The discrete diffeomorphism imple-
mented by the constraints in (ILP-SM) can also handle non-
isometries, which we show in Fig. A7 on the SHREC’20
dataset [1].

Figure A7. Matching two different non-isometric shape pairs of
the SHREC’20 dataset.

Eisenberger et al. ’20 Ren et al. ’21 Ours

0 0.5 1
0

50

100

cat

0 0.5 1
0

50

100

centaur

0 0.5 1
0

50

100

dog

0 0.5 1
0

50

100

david

0 0.5 1
0

50

100

gorilla

0 0.5 1
0

50

100

horse

0 0.5 1
0

50

100

michael

0 0.5 1
0

50

100

victoria

0 0.5 1
0

50

100

wolf

0 0.5 1
0

50

100

kid

0 0.5 1
0

50

100

fat kid

Figure A8. PCK curves for individual shape classes of TOSCA
dataset (first three rows) and KIDS dataset (last row). The hor-
izontal axis shows the geodesic error threshold, and the vertical
axis shows the percentage of matches smaller than or equal to this
error.

Texture transfer. In Fig. A9 we illustrate that the match-
ings computed with our method can be used for texture
transfer.

Figure A9. Texture transfer based on correspondences computed
with our method.

Error cases. In Fig. A10 we show some failure modes of
our method. For the partial-partial dog shown in Fig. A10a
ours was correctly initialized (correct matching head), but
was not able to determine the remaining part of matching
appropriately. This could possibly be accounted for by con-
sidering a tighter relaxation. For the partial-partial match-
ing of the ‘Victoria’ shape in Fig. A10b, the overlapping
areas of both shapes are too small, so that finding a proper

matching is extremely challenging. The matching of the
dog in Fig. A10c failed due to a wrong initialization. This
may happen if the total min-marginals do not clearly in-
dicate which matching of initial matchings are best suited.
As illustrated by these examples, there are some cases in
which our method may fail. Nevertheless, as the quanti-
tative experiments in the main paper indicate, overall our
obtained matchings improve upon several existing state-of-
the-art methods for non-rigid shape matching.

(a) (b) (c)

Figure A10. Some failure modes of our approach.

References
[1] Roberto M. Dyke, Yu-Kun Lai, Paul L. Rosin, Stefano Zap-

palà, Seana Dykes, Daoliang Guo, Kun Li, Riccardo Marin,
Simone Melzi, and Jingyu Yang. SHREC’20: Shape corre-
spondence with non-isometric deformations. Computers &
Graphics, 92:28–43, 2020. 3

[2] Marvin Eisenberger, Zorah Lahner, and Daniel Cremers.
Smooth Shells: Multi-Scale Shape Registration With Func-
tional Maps. In CVPR, 2020. 2, 3

[3] Gurobi Optimization, LLC. Gurobi optimizer reference man-
ual, 2021. 2

[4] Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovsjanikov.
Discrete Optimization for Shape Matching. Computer Graph-
ics Forum, 40(5):81–96, Aug. 2021. 2, 3

[5] Thomas Windheuser, Ulrich Schlickewei, Frank R. Schmidt,
and Daniel Cremers. Geometrically consistent elastic match-
ing of 3D shapes: A linear programming solution. In ICCV,
2011. 1, 2

