
Multimodal Colored Point Cloud to Image Alignment-
Supplementary Material

1. Clipping and Differentiability
The color transformation in section (3.3) can turn color values into values that exceed [0, 1]. This could introduce a bias

to the comparison with c, which is within bounds. We use a simple clip operation for each color value V ,

V = min(max(V, 0), 1).

However, the use of this clipping method results in the clipped values no longer depending on θi and therefore, undesirably
not being included in the optimization process. To fix this, the original gradient before clipping is used for the optimization
process. In this way, we keep the differentiability and gradients while truncating the problematic color values. The clipping
operation is then performed on the transformed colors.

2. Transition Proof
A proof of the last transition of Equation (9),
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The last transition can be easily derived from the definition of convolution.

3. Extension to 2D and Bilinear Interpolation
Let us analyze strategies A and B using the 2-D image and bilinear interpolation. First, we study the partial derivative by

u with strategy A, we denote u = uj + δu, v = vk + δv ,
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Using strategy B,
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Without the loss of generality, we analyze E1, Since E1 is a 1-D function of δu, we can use the proof 2,
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Where wu is a rectangular window function,

wu(x, y) =

{
0.5, −1 ≤ x ≤ 1, y = 0

0, otherwise.

It is easy to show that similarly E2 = ∆Jj,k+1 ∗ wu. Thus, from linearity,

IBu (u, v) = IAu (u, v) ∗ wu

And similarly for v,

IBv (u, v) = IAv (u, v) ∗ wv

Where wv is a rectangular window function,

wv(x, y) =

{
0.5, x = 0,−1 ≤ y ≤ 1

0, otherwise.

4. Synthetic Color Transformation
To simulate multimodality in the synthetic experiment, we apply a series of color effects to the RGB images in the ICL-

NUIM dataset. The point clouds with the original colors are then aligned with the images whose colors have been modified.
The set of effects chosen was,

1. Apply random color transformation of brightness, contrast, saturation, and hue using Pytorch ColorJitter with a random
range of [0, 0.4]3 and [0, 0.06], respectively.



2. Apply gamma correction with a randomly selected gamma from [0.5, 1] or [1, 2].

3. Simulate different point spread functions and sensor properties by applying a Gaussian blur to the image using a
random [0, 0.75].

The next figure shows an example of an original image of the ICL-NUIM dataset (left) and the same image after applying
such a random color transformation (right),

5. Synthetic Box Plot Results
Section 4.1 presents cumulative normalized histograms of translation and rotation errors for synthetic data experiments.

Another informative way to present the results and effectiveness of our method is to present them in a boxplot. The top
row contains all comparisons from Section 4.1 , while the bottom row contains an enlarged version of the best performing
methods. The proposed method with second-order polynomial color alignment outperforms the other methods,

6. Robustness to Initialization
To test the robustness of our method to initializations, the same experiment as in Section 4.1 is performed with larger

initialization values. Instead of aligning each image in the ICL-NUIM datasetwith the subsequent image I(i+1) it is aligned
with the non-consecutive image I(i+3). As can be seen, this scenario maintains our favorable results,
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7. Third Degree Term
As explained, in the study of Hong et al. for camera colorimetric characterization the third-order RGB term is added as

an additional dimension of the second-order polynomial kernel. To test the advantage of adding this term, we perform the
same experiment as in Section 4.1. The methods tested are the method proposed in the paper and the same method with the
additional term. As can be seen in the next figure, adding such a term has no significant effect on the results,
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8. Real Data Results
In the next figure, we present more comparisons between edges from camera images and edges extracted from rendered

point cloud images, as in Figure 5,
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