
1. More Technical Details
1.1. Details of Backbone

We use the MiT-B1 proposed in SegFormer [5] as the
backbone, which is a more friendly backbone for image seg-
mentation tasks than the vanilla ViT [4]. SegFormer uses
Overlapped Patch Merging layers with different strides to
produce multi-scale feature maps. As shown in Fig. 1, in
SegFormer the feature of Stage #4 is h

32 ×
w
32 . To obtain

the initial pseudo labels (CAM) with higher resolution, we
change the stride of the last patch merging layer from 2 to
1, leading to the feature maps with the size of h

16 ×
w
16 .

SegFormer:

This work:

Stage #1 Stage #4Stage #3Stage #2

Figure 1. The size of feature maps of different stags.

In practice, to produce the semantic affinity prediction,
we use the multi-head self-attention (MHSA) matrices ex-
tracted from the last stage, which could capture the high-
level semantic affinity. The MHSA matrices are concate-
nated to form S ∈ R hw

256×
hw
256×nk and prediction the seman-

tic affinity, where n and k are the number of Transformer
blocks and heads in each block, respectively.

1.2. Mask for Affinity Loss

Inspired by [1, 2], when computing affinity loss, we only
consider the situation that pixel pairs are in the same local
window with the radius of r, and disregard their affinity if
the distance is too far. Specifically, given a pixel (i, j), if
pixel (k, l) is the same window with (i, j), their affinity is
computed; otherwise, their affinity is ignored. Unlike [1, 2],
which extract pixel pairs when computing affinity loss, we
efficiently implemented by applying a mask. The concep-
tual illustration of this strategy and an example mask is pre-
sented in Fig. 2.
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Figure 2. Left: Illustration of the valid pixel pairs. Right: Example
mask for computing the affinity loss.

2. More Experimental Results
2.1. Hyper-parameters

Affinity from Attention. In Tab. 1, we present segmenta-
tion results on the PASCAL VOC val set with different ra-
dius r of the local window size when computing the affinity
loss. Intuitively, a small r can not provide enough affinity
pairs while a large r may not ensure the reliability of distant
affinity pairs. As shown in Tab. 1, r = 8 is a proper choice.

Table 1. Impact of the radius r when computing the affinity loss.
The results are evaluated on the val set of PASCAL VOC 2012.

radius r 2 4 8 12 16

val 62.4 62.7 63.8 61.5 59.4

Pixel-Adaptive Refinement. In Tab. 2, we report the
impact of different configurations of the proposed Pixel-
Adaptive Refinement, including the dilation rates, position
kernel, and the number of iteration. Tab. 2 shows that for
the same dilation rates, our PAR remarkably outperforms
PAMR [3], demonstrating the necessity of the position ker-
nel.

Table 2. Ablation of the dilation rates, position kernel and number
of iteration of the proposed PAR. The results are evaluated on the
train set of PASCAL VOC 2012 in mIoU (%).

Dilations
κpos Iter train

1 2 4 8 12 24

CAM 48.2

PAMR[3] 3 3 3 3 3 3 51.4
CRF 54.5

PAR

3 3 3 3 15 48.8
3 3 3 3 3 15 49.9
3 3 3 3 3 3 15 51.3
3 3 3 3 3 3 15 51.5
3 3 3 3 3 3 3 15 52.9
3 3 3 3 3 3 3 20 52.9

Tab. 3 presents the impact of the weights factors of
PAR. For simplicity, we set w1 = w2. Tab. 3 shows
w1 = 0.3, w2 = 0.3, w3 = 0.01 is a favorable choice.
Weight Factors. We present the segmentation results on
the PASCAL VOC val set with different weight factors of
loss terms in Tab. 4. λ1 = 0.1, λ2 = 0.2, λ2 = 0.01 is a
preferred choice for our framework.
Background Scores We investigate the impact of the back-
ground scores (βl, βh) to filter the pseudo labels to the re-
liable foreground, background, and uncertain regions. Intu-
itively, large βh and small βl could produce more reliable
pseudo labels but reduce the number of valid labels. On the
contrary, small βh and large βl will introduce noise to the
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Table 3. Ablation of weight factors of the proposed PAR. The re-
sults are evaluated on the train set of PASCAL VOC 2012.

w3

0.005 0.01 0.02 0.03

w1 & w2

0.1 51.9 51.7 50.1 –
0.3 52.8 52.9 51.4 48.4
0.5 51.9 52.5 51.3 48.3
0.7 – 51.6 50.9 48.0

Table 4. Impact of the weights of loss terms. The results are eval-
uated on the val set of PASCAL VOC 2012.

λ1 λ2 λ3 val

Default 0.1 0.1 0.01 63.8

0.05 62.8
0.2 61.6
0.5 57.8

0.05 63.4
0.2 61.7
0.5 58.7

0.005 62.4
0.02 62.3
0.05 61.5

Table 5. Impact of the background scores βh, βl. The results are
evaluated on the val set of PASCAL VOC 2012.

βh βl val

0.65 0.25 60.7
0.6 0.3 62.5

Default 0.55 0.35 63.8
0.5 0.4 62.9
0.45 0.45 60.5

pseudo labels. Note that the average value of βh and βl is
always 0.45, which is the preferred background score for
generated CAM in our preliminary experiments.

2.2. More Quantitative Results

We present the per-category segmentation results on
PASCAL VOC val set in Tab 6. Our method achieves the
best results for most categories. The results on test set are
available at the official PASCAL VOC evaluation website1.

2.3. More Qualitative Results

We present more qualitative results as follows.

1http://host.robots.ox.ac.uk:8080/anonymous/
GHJIIH.html

Table 6. Evaluation and comparison of the semantic segmentation
results in mIoU on the val set.

RRM[6] 1Stage [3] AA&LR [7] Ours

bkg 87.9 88.7 88.4 89.9
aero 75.9 70.4 76.3 79.5
bicycle 31.7 35.1 33.8 31.2
bird 78.3 75.7 79.9 80.7
boat 54.6 51.9 34.2 67.2
bottle 62.2 65.8 68.2 61.9
bus 80.5 71.9 75.8 81.4
car 73.7 64.2 74.8 65.4
cat 71.2 81.1 82.0 82.3
chair 30.5 30.8 31.8 28.7
cow 67.4 73.3 68.7 83.4
table 40.9 28.1 47.4 41.6
dog 71.8 81.6 79.1 82.2
horse 66.2 69.1 68.5 75.9
motor 70.3 62.6 71.4 70.2
person 72.6 74.8 80.0 69.4
plant 49.0 48.6 50.3 53.0
sheep 70.7 71.0 76.5 85.9
sofa 38.4 40.1 43.0 44.1
train 62.7 68.5 55.5 64.2
tv 58.4 64.3 58.5 50.9

mIOU 62.6 62.7 63.9 66.0
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(a) CNN CAM (b) Trans. CAM (d) Ours(c) Refine with MHSA

Figure 3. CAM generated with (a) Transformers activates more integral regions than (b) CNN. Refining CAM with (c) coarse MHSA
doesn’t work well, while (d) the learned affinity could remarkably improve the generated CAM.
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(c) Refined label(b) Ground truth (c) Initial label(a) Images

Figure 4. Improvements of the proposed pixel-adaptive refinement (PAR) module on the pseudo labels. The pseudo labels are generated
with CAM and Transformer baseline. The proposed PAR could effectively dampen the falsely activated regions and ensure the alignment
with low-level image appearance.
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AFA w/o       MHSAImages Ground Truth with    Affinity map w/o  AFA

Figure 5. Visualization of the MHSA maps, learned affinity maps, and generated pseudo labels for segmentation. ”F” denotes the query
point to visualize the attention and affinity maps. The pseudo labels are generated with our model without AFA module (w/o AFA), with
AFA module but no random walk propagation (AFA w/o prop.) and with full AFA module (with AFA). For the generated pseudo labels,
the AFA module brings notable visual improvements. The affinity propagation process further diffuses the regions with high semantic
affinity and dampens the regions with low affinity.
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Ground Truth 1Stage Ours Ground Truth Ours

PASCAL VOC MS COCO

Figure 6. Semantic segmentation results on PASCAL VOC val (left) and MS COCO val set (right). Our method outperforms 1Stage [3]
and is comparable with ground truth labels.
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(b) without AFA (c) with AFA(a) Images

Figure 7. Visualization of the MHSA maps extracted from model
without and with our AFA. ”F” denotes the query point. Our AFA
could help the MHSA to capture better semantic affinity.
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Figure 8. The learned weights of each head of self-attention in
the AFA module. Here we only present the 8 heads of the last
Transformer block. The MHSA matrices do not contribute equally
to semantic affinity. Some self-attention matrices (head #2, head
#3, and head #5) contribute negatively to semantic affinity. The
learned weights suggest applying MHSA directly as semantic
affinity is not beneficial for the pseudo labels.
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